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Recap of our project

We are developing deep-learning based 
algorithms to perform 3D segmentation on 
CT scans, and predict hemothorax volume 
as voxel count accordingly. Also, the 3D 
segmentation result helps human operator 
to assess the quality of volume prediction.
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Reason for choosing the paper

Deep Structural Causal Models are novel inventions aiming to improve 
the performance of deep neural networks on image prediction

One of their experiments was to predict MRI scans, which has some 
similarity to our task

Their project is open-source and uses PyTorch and Pyro based 
algorithms

The DSCM focuses on the causality, which provides connection between 
parameters in deep networks and the actual events happening

The paper was first published in less than 1 years ago, reflecting novel 
and cutting-edge developments of deep learning
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Author's problems on current DL models

DL is known to be susceptible to learning spurious correlations

DL tend to amplify biases

DL is exceptionally vulnerable to changes in the input distribution
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Author's problems on current SCM models

SCMs are typically employed with simple linear mechanisms

works well for scalar variables and can be useful for decision making, 
but is not flexible enough to model higher-dimensional data such as 
images
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Author's goals
Develop a general framework for building structural causal models 
(SCMs) with deep learning components, called DSCMs, to solve the 
problems above

Model counterfactual inference that is missing from existing deep causal 
learning methods
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Significance of study

Causal DL models could be capable of learning relationships from 
complex high-dimensional data

By explicitly modelling causal relationships and acknowledging the 
difference between causation and correlation, causality becomes a 
natural field of study for improving the transparency, fairness, and 
robustness of DL based systems 

The tractable inference of deep counterfactuals enables novel research 
avenues that aim to study causal reasoning on a per instance rather than 
population level



Background information
Pearl's ladder of causation
• Association 
describes reasoning about passively observed data. Correlations in the data
“What are the odds that I observe. . . ?”

• Intervention
concerns interactions with the environment. It requires knowledge beyond just 
observations
“What happens if I do. . . ?”

• Counterfactuals
hypothetical scenarios. Counterfactual is the generative processes to imagine 
alternative outcomes for individual data points
“What if I had done A instead of B?”



Background information
Structural causal models and how them fulfill the ladder of causation

fk is their structural assignments

xk is the events, εk is the exogenous noise, pak is the set of direct causes of xk
P(ε) is the joint distribution over mutually independent exogenous noise variables

• Association 
Embedded in this model
• Intervention
do(xk := a). disconnect xk with its parents and change structural assignment fk. Possible of 
changing both S and P(ε).
• Counterfactuals
hypothetical retrospective interventions: ‘What would xi have been if xj were different, given 
that we observed x?’ Only change S, not P(ε)



Background information
Do mathematically in 3 steps
• Abduction: 
Predict the ‘state of the world’ (the exogenous noise, ε) that is compatible with the 
observations, x, i.e. infer P(ε|x)

• Action:
Perform an intervention (e.g. do(xk := xk’)) corresponding to the desired 
manipulation, resulting in a modified SCM G’ = (S’, P(ε|x))

• Prediction:
Compute the quantity of interest based on the distribution entailed by the new 
counterfactual SCM as P(x).



Author's work and implenmetations
They use recent advances in normalizing flows and variational inference 
to model mechanisms for composable DSCMs that enable tractable 
counterfactual inference.

Flow based model          Variation approximation               Not used
Here, white arrows indicates abductive direction, and black arrows indicates generative direction. Dotted 
lines are amortized variational approximation. fk is the forward model, ek is an encoder that 
amortizes abduction in non-invertible mechanisms, gk is a ‘high-level’ non-invertible branch (e.
g. a probabilistic decoder), and hk is a ‘low-level’ invertible mapping (e.g. reparametrization)



Author's work and implenmetations
Deep counterfactual inference algorithm they implemented:
• Abduction: 
Use the trained encoder ej to approximate εj
And calculate approximated P(ε|x, pak)

• Action:
Replace xk by either a constant xk := xk’ or by surrogate mechanism xk := fk’(εk, pak) resulting in a 
modified SCM G’ = (S’, P(ε|x))

• Prediction:
First approximate the counterfactual distribution using Monte Carlo method.
Then sample from the distribution using uncorrelated Gaussian decoder for images.



Authors’ experiments and results
Case Study I: Morpho-MNIST

They test three different models in a synthetic dataset based on MNIST digits, where they 
defined stroke thickness to cause the brightness of each digit: thicker digits are thicker digits 
are brighter whereas thinner digits are dimmer. 
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Authors’ experiments and results
Case Study 2: Brain MRI



Importance and relevance to me:

1. It provides me with a deep insight with 
SCMs and how they can be combined with and 
improve DL.

2. The causal inference they developed could 
possibility be added to our model to improve 
explainability and assess confidence.



Good points they did:
1. A novel process of integrating SCM and DL with 
sufficient mathematical basis, and also proposed 
specific mathematical ways to model counterfactual 
inference, which other studies fail to achieve.

2. Used casual graphs to explain their model designs.

3. Provided a set of pictures to show the affect of 
changing each variables, easy to understand.



Criticisms:
1. Although they properly defined the mathematical basis, they 
did not talk much into the actual structure of the neural 
networks they design. However, the deep network structure 
itself is also crucial to the performance.
2. What’s worse, their code is completely undocumented, and 
badly structured. 
3. They actually used over 10 different decoders in their code, 
but in their paper they only talked about the Gaussian decoder, 
not the others.



Criticisms:
4. When assessing the casual relationship in the brain MRI 
model, they have 4 variables and only change one at a time. 

5. On experiment one, when the i variable is neither direct nor 
indirect cause of t, changing i does not change t at all. However, 
on experiment two, the s variable is also neither direct nor 
indirect cause of v, but apparently changing s has some affect 
on v. They did not say anything about why there is a difference.



Criticisms:
6. Most of their assessment of causality in results are based on 
qualitative analysis, not quantitative. It would be better if they 
can say something mathematically about how accurate their 
prediction is. They only showed that the DSCM can model 
causality, but not tested if those modeled relationships are 
actually correct and how they compared to ground truth.



Possible next steps
1. Develop a way to use DSCM to discover implicit causalities, 
instead of only modelling assumed causalities.

2. Add a more robust and mathematical way to assess the 
quality of prediction. 
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