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1. Clinical Motivation 

Hemothorax refers to the condition where blood presents in the chest. Each year, more 
than 300,000 cases of hemothorax are identified [1]. It is often diagnosed using 
radiography, ultrasound, or computed tomography (CT). Among the three imaging 
modalities, CT is the most sensitive at detecting smaller scale hemothorax [2], and it 
allows radiologists rather accurately to quantify blood volume, though manual 
segmentation is required. Drawing contours by hand is a time-prohibitive procedure in an 
emergency, and therefore our work can potentially better assist surgeons with operation 
planning. 
 
We envision our work producing an algorithm where it will automatically highlight 
masks indicating hemothorax for CT images. We hope to deliver a GUI-program to ease 
visualization eventually, which will also show our segmentation's confidence level. 
 

2. Prior Work 

Prior models that studied pleural effusion (excess liquid in general, including blood and 
water), a condition comparable to hemothorax, are generally rule-based or atlas-based 
[3]. Therefore they are insufficient at handling anatomical distortions, including the 
heterogeneity of attenuation and traumatic lung problems. 
 
U-net, as the most fundamental convolutional network for semantic segmentation, 
remains the most popular base architecture. It is readily used for medical image analysis. 
However, due to the multifocal nature of hemothorax, analogous to hemoperitoneum [4], 
convolutional networks will unlikely to perform well. 

 

3. Goals 

Minimally, we produce a functioning algorithm that inputs a set of CT scans and 
computes the blood volume, if any. We will use k folds validation to predict this volume, 
and we expect the error between our prediction and manual-labeled accurate volume 
estimation to be less than 5%. If time permits, we intend our program to express the 
prediction's certainty level or interpretable for doctors to assist with surgical 
decision-making. 
 

4. Technical Approach 

The dataset consists of axial CT scans with 1.5mm voxel resolution from 94 patients. In               
total, the dataset is approximately 90 GB before preprocessing. Preprocessing involves           



three primary stages; smoothing, interpolation, and construction of sagittal and coronal           
perspectives. Smoothing is necessary to fill holes that are erroneously present from noisy             
manual labelling; it is applied only to the segmentation masks. Trilinear interpolation is             
used to generate 1mm voxels so that additional sagittal/coronal slices can be generated.             
This is useful for network training as it smooths the objective functions. However, in              
total, the preprocessing multiplies the dataset size in memory by 4.5 fold, reaching             
approximately 400 GB, averaging 4 GB per patient. 

 

After preprocessing, the data is split for 5-fold cross validation. Then, two diverging             
paths are implemented: first, the standard approach of applying deep segmentation           
networks using train/test and train/val/test splits, and second, an ensemble of the deep             
segmentation networks trained on combinations of folds, the results of which are merged             
using a meta-model. The meta-model is also a deep network that receives 3D input where               
each channel is the segmentation mask of one of the ensemble networks. Given this              
ensemble architecture, a total of 5(21Arch+1) deep networks need to be trained. In this              
particular implementation of the ensemble architecture, Arch=3: 3D U-Net [7], V-Net           
[8], and Med3D [9]. Therefore, a total of 320 deep networks are trained. To process this                
workload, a personal compute cluster, Orthrus, is used. The details of Orthrus are             
provided in the figure below. 



 
The Orthrus cluster is estimated to be able to train the 5 ensembles within about 2 weeks                 
based on sheer FLOPs and the total number of operations per base model architecture in               
PyTorch. The ensemble is implemented to boost performance of the individual base            
model by allowing introspection from the meta-model. This builds off the concepts            
developed in [5] whereby new data folds are iteratively introduced to the ensemble layers              
so that subsequent layers can learn and correct the previous layer errors. In the              
aforementioned methods, each subsequent ensemble layer received an additional fold so           
that the layered meta-models could introspectively learn how the ensemble was learning.            
In the ensemble architecture designed below, the key differences are that the ensemble             
layers are flattened and that the folds are introduced in combinations rather than             
sequentially. This method is preferable for the large dataset because fewer folds are             
necessary to enable introspective learning. 
 
The proposed ensemble is designed for 5-fold cross validation. Of the 4 training folds,              
one is reserved for meta-model training. The other three are used to train the base models                
in all combinations of the folds. Folds that are not included in the training data are used                 
for validation to help prevent overfitting. The base models then predict segmentation            
masks for the reserved meta-model fold, upon which the meta-model then trains. Lastly,             
the meta-model inferences the reserved testing fold to generate the standard segmentation            
metrics: AUROC, Dice, and Jaccard indices. Additionally, the segmented voxels are           
summed to estimate the Hemothoracic volume. The proposed ensemble architecture          
generates 7 base models per architecture for each iteration of cross validation, whereas             
the original methods in [5] would only yield 3 base models per architecture. 
 
 
 



The ensemble approach also enables output of a confidence level per pixel, which works              
toward the maximal goal of the project. Using the reserved meta-model training fold,             
base model statistics can be collected to weight the respective segmentation capabilities.            
Then, when inferencing the testing fold, the amount of weighted disagreement between            
base models can be visualized as a heatmap per pixel per slice. Pixels with little weighted                
disagreement are considered more reliable than pixels with greater weighted          
disagreement. This ultimately yields localized confidence levels, which can then be           
trivially merged via averaging or as a histogram distribution to ascertain global            
confidence in the segmentation. 

 

 



5. Testing Plan 

● Testing of preprocessing: The functions to perform interpolation and 3-D slices will be tested 

using unit tests. We also plan to eye-inspect the result of the preprocessing against the original 

file to verify the result. 

● Testing of frameworks, pipelines, and I/Os: Those API will be tested mainly through unit tests, 

and their overall function will be verified and debugged during the training. 

● Testing of models: All models (including the benchmarks and the ensemble) will be validated 

using Dice and Jaccard indices, as well as the ROC curve. 

 

6. Key Activities & Deliverables 

 

7. Dependencies 

 Activities Results/Deliverables 

Minimum Literature survey for model selection Draft a list of open-source models with code or 
architecture description 

Preprocess CT scans (interpolate, make 3d 
slices) 

Interpolate CT scans and convert data to 
PyTorch tensor type 

Complete pipeline and I/O APIs for the project Build a network framework consists of Python 
classes 

Benchmark open-source models Benchmark existing open-source models 
measured with Dice/Jaccard 

Expected  Design and implement an ensemble algorithm A program that estimates blood volume 
(inputs: CT axial scans; output: a value) 

Improve the ensemble algorithm A program outperforms the benchmark (inputs: 
CT axial scans; output: a value) 

Maximum Implement a GUI-program for visualization A program incorporates the framework (inputs: 
CT axial scans; output: segmentation) 

Incorporate certainty level into our algorithm A program visualizes confidence (input: CT 
axial scans; output: heatmaps) 

Dependency Need Status Followup Contingency Plan Planned Hard 



 

8. Timelines & Project Management 

The Timeline of this project consists of two major parallel parts: Project Timeline and 

Documentation Timeline. The project Timeline includes the designs of the pipeline, I/O, 

API, GUI, and the building, training, testing, and evaluating our deep learning models. 

The Documentation Timeline includes the documentation, reports, and other write-ups, 

which will be done along with our project developments. The details are discussed below: 

 
a) Project Timeline and Management 

The project involves 4 majors steps. The first step is the design of data conversion, 

pipeline, and I/O APIs, as well as the result evaluation algorithms, which are to be done 

before the mid of March. The second step is the four model training to get us the 

benchmark results, and the third step is our ensemble design and training, which takes the 

most time of this project, planned to be done by the mid of April.  As we have 3 people, 

those steps are done with parallelism, as shown in the timeline graph. The last step, which 

is for our maximum deliverables, includes a fancy GUI and training-visualization system 

to make the training, evaluation, and predicting processes accessible to everyone. To 

track the progress and manage our project, we use project management software 

(monday.com) to update tasks, timeline, and progress, as shown below: 

 

Computing 
Power  

train many 
models 

Orthrus cluster N/A Google Cloud Credits 1/28 2/22 

CT Scans train any 
models 

Uploaded to 
Orthrus 

Interpolating to 
1mm, building 3 
views 

N/A 2/18 2/24 

CUDA 
developer.nvidia.com
/cuda-zone 

GPU interface Installed N/A N/A 1/28 2/22 

PyTorch 
pytorch.org 

setup 
environment 

Installed  N/A Tensorflow 
tensorflow.org 

N/A N/A 

3D Slicer 
slicer.org 

visualize scans Installed N/A Use python packages N/A N/A 

Open-Sourc
e Models 

Benchmark 
and ensemble 

Implementing Run and evaluate N/A 3/10 3/15 



 

 

Additionally, the main timeline dependency is the ensemble leading into 

confidence/visualization; if the ensemble runs overtime, then the confidence algorithm 

and visualization wait until the ensemble is done. 
 

b) Documentation Timeline 

The documentation of our API and programs are done along with the implementation and 

testing processes. Aside from those, our major write-ups are this project proposal, 

checkpoint report, benchmark report, PEAK ensemble evaluation, poster and final report. 

The planned timelines for those documentations are shown below: 

 

 

 



9. Roles & Responsibilities 

a) Team members 

● Benjamin Albert   

Undergraduate Junior, BME & CS major, responsible for the design and 

implementation of PECK ensembles and API, participates in all other works. 

 

● Chang Yan   

Undergraduate Junior, BME & CS & CE major, responsible for the API, GUI 

design and benchmark evaluation, participates in all other works. 

 

● Gary Yang 

Undergraduate Junior, BME & CS major, responsible for the API design and 

benchmark training, participates in all other works. 

 
b) Team mentors 

● Dr. David Dreizin 

Associate Professor at the University of Maryland School of Medicine, provides 

the clinical data. 

 

● Dr. Mathias Unberath 

Assistant Professor in the Department of Computer Science at Johns Hopkins 

University with affiliations to the Laboratory for Computational Sensing and 

Robotics and the Malone Center for Engineering in Healthcare. 

 

10. Management Plan 

a) Meetings 

The student team meets with each other everyday through WeChat group or Zoom 

meetings. Progress is relayed to the mentors every couple of weeks via text and email. 
b) Platforms 

Codes: We will use Github private repository to collaboratively work on our programs 

and APIs, and they will be kept private until disclosed by our mentors. 

Communications: Communications are mainly done in Wechat Group, Zoom meetings, 

and emails. 

Write-ups: We use private Google Docs to work on reports, presentations and other 

write-ups collaboratively. 
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