

Project Proposal
Predicting hemorrhage related outcomes with

CT volumetry for traumatic hemothorax

Benjamin Albert Chang Yan Gary Yang

Table of contents:

1. Clinical Motivation

2. Prior Work

3. Goals

4. Technical Approach

5. Testing Plan

6. Key Activities & Deliverables

7. Dependencies

8. Timelines & Project Management

a) Project Timeline and Management

b) Documentation Timeline

9. Roles & Responsibilities

a) Team Members

b) Team Mentors

10. Management Plan

a) Meetings

b) Platforms

11. References

1. Clinical Motivation

Hemothorax refers to the condition where blood presents in the chest. Each year, more
than 300,000 cases of hemothorax are identified [1]. It is often diagnosed using
radiography, ultrasound, or computed tomography (CT). Among the three imaging
modalities, CT is the most sensitive at detecting smaller scale hemothorax [2], and it
allows radiologists rather accurately to quantify blood volume, though manual
segmentation is required. Drawing contours by hand is a time-prohibitive procedure in an
emergency, and therefore our work can potentially better assist surgeons with operation
planning.

We envision our work producing an algorithm where it will automatically highlight
masks indicating hemothorax for CT images. We hope to deliver a GUI-program to ease
visualization eventually, which will also show our segmentation's confidence level.

2. Prior Work

Prior models that studied pleural effusion (excess liquid in general, including blood and
water), a condition comparable to hemothorax, are generally rule-based or atlas-based
[3]. Therefore they are insufficient at handling anatomical distortions, including the
heterogeneity of attenuation and traumatic lung problems.

U-net, as the most fundamental convolutional network for semantic segmentation,
remains the most popular base architecture. It is readily used for medical image analysis.
However, due to the multifocal nature of hemothorax, analogous to hemoperitoneum [4],
convolutional networks will unlikely to perform well.

3. Goals

Minimally, we produce a functioning algorithm that inputs a set of CT scans and
computes the blood volume, if any. We will use k folds validation to predict this volume,
and we expect the error between our prediction and manual-labeled accurate volume
estimation to be less than 5%. If time permits, we intend our program to express the
prediction's certainty level or interpretable for doctors to assist with surgical
decision-making.

4. Technical Approach

The dataset consists of axial CT scans with 1.5mm voxel resolution from 94 patients. In
total, the dataset is approximately 90 GB before preprocessing. Preprocessing involves

three primary stages; smoothing, interpolation, and construction of sagittal and coronal
perspectives. Smoothing is necessary to fill holes that are erroneously present from noisy
manual labelling; it is applied only to the segmentation masks. Trilinear interpolation is
used to generate 1mm voxels so that additional sagittal/coronal slices can be generated.
This is useful for network training as it smooths the objective functions. However, in
total, the preprocessing multiplies the dataset size in memory by 4.5 fold, reaching
approximately 400 GB, averaging 4 GB per patient.

After preprocessing, the data is split for 5-fold cross validation. Then, two diverging
paths are implemented: first, the standard approach of applying deep segmentation
networks using train/test and train/val/test splits, and second, an ensemble of the deep
segmentation networks trained on combinations of folds, the results of which are merged
using a meta-model. The meta-model is also a deep network that receives 3D input where
each channel is the segmentation mask of one of the ensemble networks. Given this
ensemble architecture, a total of 5(21Arch+1) deep networks need to be trained. In this
particular implementation of the ensemble architecture, Arch=3: 3D U-Net [7], V-Net
[8], and Med3D [9]. Therefore, a total of 320 deep networks are trained. To process this
workload, a personal compute cluster, Orthrus, is used. The details of Orthrus are
provided in the figure below.

The Orthrus cluster is estimated to be able to train the 5 ensembles within about 2 weeks
based on sheer FLOPs and the total number of operations per base model architecture in
PyTorch. The ensemble is implemented to boost performance of the individual base
model by allowing introspection from the meta-model. This builds off the concepts
developed in [5] whereby new data folds are iteratively introduced to the ensemble layers
so that subsequent layers can learn and correct the previous layer errors. In the
aforementioned methods, each subsequent ensemble layer received an additional fold so
that the layered meta-models could introspectively learn how the ensemble was learning.
In the ensemble architecture designed below, the key differences are that the ensemble
layers are flattened and that the folds are introduced in combinations rather than
sequentially. This method is preferable for the large dataset because fewer folds are
necessary to enable introspective learning.

The proposed ensemble is designed for 5-fold cross validation. Of the 4 training folds,
one is reserved for meta-model training. The other three are used to train the base models
in all combinations of the folds. Folds that are not included in the training data are used
for validation to help prevent overfitting. The base models then predict segmentation
masks for the reserved meta-model fold, upon which the meta-model then trains. Lastly,
the meta-model inferences the reserved testing fold to generate the standard segmentation
metrics: AUROC, Dice, and Jaccard indices. Additionally, the segmented voxels are
summed to estimate the Hemothoracic volume. The proposed ensemble architecture
generates 7 base models per architecture for each iteration of cross validation, whereas
the original methods in [5] would only yield 3 base models per architecture.

The ensemble approach also enables output of a confidence level per pixel, which works
toward the maximal goal of the project. Using the reserved meta-model training fold,
base model statistics can be collected to weight the respective segmentation capabilities.
Then, when inferencing the testing fold, the amount of weighted disagreement between
base models can be visualized as a heatmap per pixel per slice. Pixels with little weighted
disagreement are considered more reliable than pixels with greater weighted
disagreement. This ultimately yields localized confidence levels, which can then be
trivially merged via averaging or as a histogram distribution to ascertain global
confidence in the segmentation.

5. Testing Plan

● Testing of preprocessing: The functions to perform interpolation and 3-D slices will be tested

using unit tests. We also plan to eye-inspect the result of the preprocessing against the original

file to verify the result.

● Testing of frameworks, pipelines, and I/Os: Those API will be tested mainly through unit tests,

and their overall function will be verified and debugged during the training.

● Testing of models: All models (including the benchmarks and the ensemble) will be validated

using Dice and Jaccard indices, as well as the ROC curve.

6. Key Activities & Deliverables

7. Dependencies

 Activities Results/Deliverables

Minimum Literature survey for model selection Draft a list of open-source models with code or
architecture description

Preprocess CT scans (interpolate, make 3d
slices)

Interpolate CT scans and convert data to
PyTorch tensor type

Complete pipeline and I/O APIs for the project Build a network framework consists of Python
classes

Benchmark open-source models Benchmark existing open-source models
measured with Dice/Jaccard

Expected Design and implement an ensemble algorithm A program that estimates blood volume
(inputs: CT axial scans; output: a value)

Improve the ensemble algorithm A program outperforms the benchmark (inputs:
CT axial scans; output: a value)

Maximum Implement a GUI-program for visualization A program incorporates the framework (inputs:
CT axial scans; output: segmentation)

Incorporate certainty level into our algorithm A program visualizes confidence (input: CT
axial scans; output: heatmaps)

Dependency Need Status Followup Contingency Plan Planned Hard

8. Timelines & Project Management

The Timeline of this project consists of two major parallel parts: Project Timeline and

Documentation Timeline. The project Timeline includes the designs of the pipeline, I/O,

API, GUI, and the building, training, testing, and evaluating our deep learning models.

The Documentation Timeline includes the documentation, reports, and other write-ups,

which will be done along with our project developments. The details are discussed below:

a) Project Timeline and Management

The project involves 4 majors steps. The first step is the design of data conversion,

pipeline, and I/O APIs, as well as the result evaluation algorithms, which are to be done

before the mid of March. The second step is the four model training to get us the

benchmark results, and the third step is our ensemble design and training, which takes the

most time of this project, planned to be done by the mid of April. As we have 3 people,

those steps are done with parallelism, as shown in the timeline graph. The last step, which

is for our maximum deliverables, includes a fancy GUI and training-visualization system

to make the training, evaluation, and predicting processes accessible to everyone. To

track the progress and manage our project, we use project management software

(monday.com) to update tasks, timeline, and progress, as shown below:

Computing
Power

train many
models

Orthrus cluster N/A Google Cloud Credits 1/28 2/22

CT Scans train any
models

Uploaded to
Orthrus

Interpolating to
1mm, building 3
views

N/A 2/18 2/24

CUDA
developer.nvidia.com
/cuda-zone

GPU interface Installed N/A N/A 1/28 2/22

PyTorch
pytorch.org

setup
environment

Installed N/A Tensorflow
tensorflow.org

N/A N/A

3D Slicer
slicer.org

visualize scans Installed N/A Use python packages N/A N/A

Open-Sourc
e Models

Benchmark
and ensemble

Implementing Run and evaluate N/A 3/10 3/15

Additionally, the main timeline dependency is the ensemble leading into

confidence/visualization; if the ensemble runs overtime, then the confidence algorithm

and visualization wait until the ensemble is done.

b) Documentation Timeline

The documentation of our API and programs are done along with the implementation and

testing processes. Aside from those, our major write-ups are this project proposal,

checkpoint report, benchmark report, PEAK ensemble evaluation, poster and final report.

The planned timelines for those documentations are shown below:

9. Roles & Responsibilities

a) Team members

● Benjamin Albert

Undergraduate Junior, BME & CS major, responsible for the design and

implementation of PECK ensembles and API, participates in all other works.

● Chang Yan

Undergraduate Junior, BME & CS & CE major, responsible for the API, GUI

design and benchmark evaluation, participates in all other works.

● Gary Yang

Undergraduate Junior, BME & CS major, responsible for the API design and

benchmark training, participates in all other works.

b) Team mentors

● Dr. David Dreizin

Associate Professor at the University of Maryland School of Medicine, provides

the clinical data.

● Dr. Mathias Unberath

Assistant Professor in the Department of Computer Science at Johns Hopkins

University with affiliations to the Laboratory for Computational Sensing and

Robotics and the Malone Center for Engineering in Healthcare.

10. Management Plan

a) Meetings

The student team meets with each other everyday through WeChat group or Zoom

meetings. Progress is relayed to the mentors every couple of weeks via text and email.
b) Platforms

Codes: We will use Github private repository to collaboratively work on our programs

and APIs, and they will be kept private until disclosed by our mentors.

Communications: Communications are mainly done in Wechat Group, Zoom meetings,

and emails.

Write-ups: We use private Google Docs to work on reports, presentations and other

write-ups collaboratively.

11. References

[1] Zeiler, J., Idell, S., Norwood, S., & Cook, A. (2020). Hemothorax: A Review of the
Literature. Clinical pulmonary medicine, 27(1), 1–12.
https://doi.org/10.1097/CPM.0000000000000343
[2] Dreizin, D., Zhou, Y., Zhang, Y., Tirada, N., & Yuille, A. L. (2020). Performance of a
Deep Learning Algorithm for Automated Segmentation and Quantification of Traumatic Pelvic
Hematomas on CT. Journal of digital imaging, 33(1), 243–251.
https://doi.org/10.1007/s10278-019-00207-1
[3] Sangster, G. P., González-Beicos, A., Carbo, A. I., Heldmann, M. G., Ibrahim, H.,
Carrascosa, P., Nazar, M., & D'Agostino, H. B. (2007). Blunt traumatic injuries of the lung
parenchyma, pleura, thoracic wall, and intrathoracic airways: multidetector computer
tomography imaging findings. Emergency radiology, 14(5), 297–310.
https://doi.org/10.1007/s10140-007-0651-8
[4] Dreizin, D., Zhou, Y., Fu, S., Wang, Y., Li, G., Champ, K., Siegel, E., Wang, Z., Chen,
T., & Yuille, A. L. (2020). A Multiscale Deep Learning Method for Quantitative Visualization of
Traumatic Hemoperitoneum at CT: Assessment of Feasibility and Comparison with Subjective
Categorical Estimation. Radiology. Artificial intelligence, 2(6), e190220.
https://doi.org/10.1148/ryai.2020190220
[5] Yao, J., Bliton, J., & Summers, R. M. (2013). Automatic segmentation and measurement
of pleural effusions on CT. IEEE transactions on bio-medical engineering, 60(7), 1834–1840.
https://doi.org/10.1109/TBME.2013.2243446
[6] B. A. Albert, "Deep Learning From Limited Training Data: Novel Segmentation and
Ensemble Algorithms Applied to Automatic Melanoma Diagnosis," in IEEE Access, vol. 8, pp.
31254-31269, 2020, https://doi.org/10.1109/ACCESS.2020.2973188
[7] Çiçek Ö., Abdulkadir A., Lienkamp S.S., Brox T., Ronneberger O. (2016) 3D U-Net:
Learning Dense Volumetric Segmentation from Sparse Annotation. In: Ourselin S., Joskowicz
L., Sabuncu M., Unal G., Wells W. (eds) Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, vol 9901.
Springer, Cham. https://doi.org/10.1007/978-3-319-46723-8_49
[8] F. Milletari, N. Navab and S. Ahmadi, "V-Net: Fully Convolutional Neural Networks for
Volumetric Medical Image Segmentation," 2016 Fourth International Conference on 3D Vision
(3DV), Stanford, CA, USA, 2016, pp. 565-571, https://doi.org/10.1109/3DV.2016.79
[9] Chen, S., Ma, K., & Zheng, Y. (2019). Med3D: Transfer Learning for 3D Medical Image
Analysis. ArXiv, abs/1904.00625. https://arxiv.org/abs/1904.00625

https://doi.org/10.1097/CPM.0000000000000343
https://doi.org/10.1007/s10278-019-00207-1
https://doi.org/10.1007/s10140-007-0651-8
https://doi.org/10.1148/ryai.2020190220
https://doi.org/10.1109/TBME.2013.2243446
https://doi.org/10.1109/ACCESS.2020.2973188
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1109/3DV.2016.79
https://arxiv.org/abs/1904.00625

