Mixed Reality for Biopsy Site Localization - Paper Critique

Miller AC, Blalock TW. Augmented reality: a novel means of measurement in dermatology. J Med Eng Technol. 2021 Jan;45(1):1-5. doi: <u>10.1080/03091902.2020.1838641</u>. Epub 2020 Nov 16. PMID: 33191825.

Students: Ruby Liu Liam Wang (external to CIS II) Mentors: Dr. Peter Kazanzides Dr. Ashley Antony Dr. Jeffrey Scott Dr. Kristin Bibee Dr. Elise Ng

Project Summary

Problem

Skin biopsies are used by dermatologists to diagnose cutaneous ailments, but site identification can be difficult — leading to site misidentification

Goal

We aim to create a mobile augmented reality application that can provide dermatologists with additional guidance to locate the biopsy site

Paper: Augmented reality: a novel means of measurement in dermatology.

Austin C. Miller and Travis W. Blalock

Full citation: Miller AC, Blalock TW. Augmented reality: a novel means of measurement in dermatology. J Med Eng Technol. 2021 Jan;45(1):1-5. doi: <u>10.1080/03091902.2020.1838641</u>. Epub 2020 Nov 16. PMID: 33191825.

A paper discussing the use of **augmented reality** for measurement in dermatology, particularly using **smartphones**

Related to our project: development of an augmented reality mobile app (smartphone/tablet) for locating a biopsy site in dermatology. Some takeaways:

- Many AR applications lack published data on precision; we should compile an organized report on precision/accuracy for our application
- Variability in definition of accuracy for AR applications requires us to define it in our case
- Cross-platform reliability is good to have—we may want to expand to Android and other platforms

Intro/Background

Accurate/consistent **measurement** of the **size** of cutaneous lesions is important for diagnosis, treatment, monitoring, etc.

	5
Γ	

But measuring is **inconsistent** — varying methods/tools, human error, and other variables (lighting, skin tension, etc.) can lead to both inter- and intrapersonal variability

Existing technology for measuring lesions more accurately may require sophisticated software and complex equipment that can be **costly/bulky/time-consuming**

Paper proposes that smartphone AR applications can be used to assist

Intro/Background

AR can overlay digital content over the real world/live camera

AR applications with a virtual ruler can be used for measurements; existing applications: Google's Android and Apple's iOS built-in AR measurement apps

Typical features:

- Measure distance between two points using real-time camera
- Make multiple measurements
- Track previous measurements
- Capture images easily
- Sometimes:
 - Height/surface area measurements
 - Toggle between standard/metric units

Discussion: Smartphone App Benefits

The paper discusses a number of studies demonstrating the improvement in accuracy/reliability that can result from using a smartphone application:

The smartphone application produced **more consistent** and **more accurate** measurements.

	Intra-rater reliability	Inter-rater reliability	Accuracy
Smartphone App	Good	Good	Clinically useful, better than ruler
Ruler	Good	Poor	Inferior to app

Discussion: Dermatology Measurement AR

Paper discusses other applications/benefits of AR in dermatology:

- Portability and convenience
 - 85% of healthcare providers use smartphones
 - Camera requires only one hand, vs. ruler or methods needing two people
- Track lesions over time; one option: record distance from certain landmarks
 - \circ Similarities to the registration method of our application?
- Measure distance between multiple fixed points and/or distances exceeding ruler size
 - Can be used for guiding routine procedures
- Create virtual landmarks for additional measurements in complex cases
- AR measurement can be incorporated into electronic health record software on phones/tablets
 - Can use in conjunction with image documentation for easy review
 - Could in turn improve speed/accuracy of lesion identification

Image from <u>Miller et al.</u>

Discussion: AR in Surgical Fields

Paper discusses other applications/benefits of AR in surgical fields:

- 3D overlay of anatomy
- Dermatological surgery (our project!)
 - Quickly map incision points
 - Measure surgical margins perioperatively
 - AR measurement could provide additional measurements/calculations: tumor volume/area, ratios, etc.
 - Use of camera vs. physical ruler can lead to less wound contamination, wound infections, surgical cost, medical waste (from ruler usage)

Limitations of AR

- Not much data generated for smartphone AR measurements; most data are focused on nonhuman structures
- Many AR apps are **rudimentary** in area calculations; specificity may require further improvement + more advanced calculations
- AR measurement apps **lack published data** on precision/accuracy in dermatology trials + research necessary to determine dermatologic usefulness
- Variability in fundamental elements: definition of accuracy, image acquisition, registration techniques, computers and software interfaces, integration of real-time data, tissue displacement, judgement and clinical experience
- Human error → technological/mechanical error; can compensate but doing so across platforms would need cross-platform reliability

Conclusion

- Most effective techniques for skin-lesion measurement would be simple/practical to implement in broad/diverse clinical settings
- Absence of validated gold standard for measurement of skin lesion size → difficult to conclude which method is superior. Still, AR offers certain advantages:
 - Easily accessible and user friendly technology
 - Could reduce inter- and intrapersonal errors
 - Reduce intraoperative infections, lengthy training, and costs

AR has the potential to become a standard, commonplace measuring tool

Paper Critiques

- Only demonstrated usage of iPhone AR app, but discussed Android and others could have provided figures or further elaboration of other applications
- Discussed incorporating measurements into electronic health records how feasible would it be? Would the information interface directly with the app or would the physician have to redo measurements to check?
- More data would have been nice: numerical data for smartphone accuracy, and perhaps something for tracking lesions over time, which is essentially the goal of our own project
- Paper states it is "difficult to conclude" whether a smartphone app would be superior due to the lack of a validated gold standard in the Conclusion. Surprising the authors seemed to strongly support a claim of smartphone apps being beneficial in many ways + mention "the gold standard of wound area measurement" earlier
 - Could bring up the lack of validated gold standard earlier or mention that the method mentioned earlier is not validated if it is not; and/or they could say "despite the lack of a validated gold standard, AR offers many benefits" etc.

Final Takeaways and Application to Project

Paper summarized limitations of AR in dermatology; most takeaways reflect that:

- Many AR applications lack published data on precision; we should compile an organized report on precision/accuracy for our application
- Variability in definition of accuracy for AR applications requires us to define it in our case
- Cross-platform reliability is good to have—we may want to expand to Android and other platforms in future work

Some other takeaways:

- 85% of healthcare providers use smartphones good to know if we want to distribute our application
- A simple, straightforward, and user-friendly application is ideal as opposed to a complex, time-consuming app
- Paper discussed use of existing AR applications; we could look into integrations for future work

References

- 1. Miller AC, Blalock TW. Augmented reality: a novel means of measurement in dermatology. J Med Eng Technol. 2021 Jan;45(1):1-5. doi: 10.1080/03091902.2020.1838641. Epub 2020 Nov 16. PMID: 33191825.
- 2. Zhang J, Rosen A, Orenstein L, et al. Factors associated with biopsy site identification, postponement of surgery, and patient confidence in a dermatologic surgery practice. J Am Acad Dermatol. 2016; 74:1185-1193.
- 3. Lichtman MK, Countryman NB. Cell phone assisted identification of surgery site. Dermatol Surg. 2013;39(3 Pt 1):491-2.
- 4. Highsmith JT, Weinstein DA, Highsmith MJ, Etzkorn JR. BIOPSY 1-2-3 in Dermatologic Surgery: Improving Smartphone use to Avoid Wrong-Site Surgery. Technol Innov. 2016;18(2-3):203-206. doi:10.21300/18.2-3.2016.203
- DaCunha M, Habashi-Daniel A, Hanson C, Nichols E, Fraga GR. A smartphone application to improve the precision of biopsy site identification: A proof-of-concept study. Health Informatics J. 2020 Mar 16:1460458220910341. doi: 10.1177/1460458220910341. Epub ahead of print. PMID: 32175791.
- Timerman D, Antonov NK, Dana A, Gallitano SM, Lewin JM. Facial lesion triangulation using anatomic landmarks and augmented reality. J Am Acad Dermatol. 2020 Nov;83(5):1481-1483. doi: 10.1016/j.jaad.2020.03.040. Epub 2020 Mar 25. PMID: 32222445.
- 7. Mcginness, J.L. And Goldstein, G. (2010), The Value of Preoperative Biopsy-Site Photography for Identifying Cutaneous Lesions. Dermatologic Surgery, 36: 194-197. <u>https://doi.org/10.1111/j.1524-4725.2009.01426.x</u>