# Mixed Reality for Biopsy Site Localization

Students: Ruby Liu Liam Wang (external to CIS II) Mentors: Dr. Peter Kazanzides Dr. Ashley Antony Dr. Jeffrey Scott Dr. Kristin Bibee Dr. Elise Ng

### **Project Overview**



Skin biopsies are used by dermatologists to diagnose cutaneous ailments



The usual method of using photos to determine the biopsy site prior surgery is difficult, with physicians incorrectly identifying 5.9% of sites in a study <sup>[Mcginness, 2010]</sup>



We aim to create a mobile augmented reality application that can provide dermatologists with additional guidance to locate the biopsy site

### **Previous Work on Biopsy Site Localization**

UV-Fluorescent Tattoo Image and work: Chuang, 2011 Transparent Grid

Image and work: Rajput, 2019

Confocal Microscopy Image and work: Navarrete-Dechent, 2018 Facial Recognition + AR Image and work: Timerman, 2020



None have been incorporated into general practice yet!

## Our Goals

Create a mobile application to be deployed on a phone or tablet that can **overlay the correct site location** on a **live video** of the patient's skin

If successful, we can reduce the likelihood of incorrect site identification and thus reduce the number of or eliminate wrong-site surgeries.



# **UI Outline**

#### At Biopsy

Take two 2D color photos of biopsy site + surrounding anatomical landmarks (No change to current procedure)



Software overlays biopsy site on live camera feed

## **Technical Approach - Registration Algorithm**

Will implement the algorithm using Python on Windows 10 with OpenCV packages; can prototype with GRIP

- Input user clicks as pixel coordinates in both biopsy and surgery photos for biopsy site + tracking points
- Use feature detection (corners) near input points to find precise tracking points
- Find transformation using 2D-2D homography and create a circle/dot at predicted biopsy site

Testing: First register a biopsy photo to itself, check accuracy by ensuring marked position is the same as the true position, then try registration with biopsy and surgery photos at various locations



# Technical Approach - Live Marker Tracking

We will use **colored stickers** as markers, which will be placed near the presumed biopsy location. This algorithm will also be implemented with OpenCV packages.

- Markers can be found using HSV thresholding
- Contours of markers can be found and filtered before being used to calculate the centroids
- The centroid points will be used to calculate the 2D transformation of the biopsy site for each frame

Calibration for lighting conditions:

- Take a picture from live feed and select a marker
- Pixel color of marker will be used to adjust HSV threshold

# **Technical Approach - Application Development**

For an approach using XCode:

- Create Swift or Objective-C application with CocoaPods OpenCV dependency
- Use XCode storyboards and CocoaTouch for UI layout
  - Custom UIKit View for selecting points on images
- OpenCV has an iOS library that we plan to use for live AR tracking and overlay
  - Canny edge detection for helping user line up camera to take surgery photo from similar perspective as biopsy photo

Another option: Unity

- Better for cross-platform development

# Deliverables

|          | Deliverable                                                                                               | Expected Completion |
|----------|-----------------------------------------------------------------------------------------------------------|---------------------|
| Min      | Basic placeholder application                                                                             | 2/26                |
|          | Algorithm to register biopsy site photos to another photo / marked photos with documentation              | 3/5                 |
| Expected | Algorithm to track markers and overlay biopsy site to live video / video with tracking with documentation | 4/2                 |
|          | Error metrics to quantify accuracy of the live overlay                                                    | 4/9                 |
|          | Basic working interface with calibration overlay guidance with application documentation                  | 4/2                 |
| Max      | Completely functional mobile application with documentation                                               | 5/1                 |
|          | Experimental data to quantify the geometric accuracy of our application                                   | 5/1                 |

# Dependencies

| Dependency                                                  | Need                                                                                                                                                                             | Contingency                                                                         | Status                                | Planned<br>Deadline | Hard Deadline |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------|---------------------|---------------|
| Biopsy photos from Dr. Antony                               | For testing the registration algorithm                                                                                                                                           | Photos of ourselves                                                                 | Met                                   | 2/19                | 2/26          |
| Computer/internet access                                    | For software development and communication                                                                                                                                       | If technical difficulties — repair or use alternate device. Internet — mobile data. | Currently met                         | Continuous          | Continuous    |
| Mobile device                                               | For testing mobile application                                                                                                                                                   | Use mobile device software simulators                                               | Currently met                         | Continuous          | Continuous    |
| Platform to develop application                             | Platform that isn't specific to iOS or<br>Android and able to develop on Windows<br>and MacOS                                                                                    | If not possible for technical reasons, use<br>XCode (MacOS dev only)                | Met — Using<br>XCode on Liam's<br>Mac | 2/26                | 3/5           |
| Stickers                                                    | Markers for computer vision tracking                                                                                                                                             | Print colored dots and tape them on                                                 | Met — Ruby has                        | 3/1                 | 3/15          |
| Being able to load our application to an independent device | Independence would be useful for user<br>testing, but iOS development restrictions<br>may prevent easy deployment (may need<br>a license or to stay plugged in to a<br>computer) | Keep device plugged in, look for other methods of deployment, or buy license        | Met — can use while unplugged         | 4/1                 | 4/15          |

### **Timeline/Milestones**

#### Registration and Tracking (Ruby)

| Milestone                                                                                | Expected Completion |
|------------------------------------------------------------------------------------------|---------------------|
| Create basic I/O application to record user<br>clicks on biopsy images                   | 2/26                |
| Finish algorithm to register biopsy site photos to another photo                         | 3/5                 |
| Finish algorithm to track markers                                                        | 3/15                |
| Finish algorithm to overlay biopsy site to live video with marker and code documentation | 4/2                 |
| Quantify accuracy of the live overlay with<br>pixel error metrics                        | 4/9                 |
| Acquire experimental data and quantify errors in real units                              | 5/1                 |

#### Mobile Application Development (Liam)

| Milestone                                                                             | Expected Completion |  |  |
|---------------------------------------------------------------------------------------|---------------------|--|--|
| Create basic placeholder mobile application and determine how programs will interface | 2/26                |  |  |
| Create edge detection overlay for photography guidance and document code              | 3/5                 |  |  |
| Have a working UI to select points on images                                          | 3/15                |  |  |
| Integrate photo registration and marker tracking into the mobile application          | 4/2                 |  |  |
| Complete and deploy final application with documentation                              | 5/1                 |  |  |

## **Team Management and Responsibilities**

#### Students

- Ruby: Registration and live marker tracking software, wiki upkeep
- Liam: Mobile application development

#### Mentors

- Dr. Peter Kazanzides: Research Professor, CS
- Dr. Ashley Antony: Resident Doctor, Dermatology
- Dr. Jeffrey Scott: Assistant Professor, Dermatology
- Dr. Kristin Bibee: Assistant Professor, Dermatology
- Dr. Elise Ng: Assistant Professor, Dermatology

Will have **weekly** or **biweekly** Zoom meetings with Ruby, Liam, and Dr. Peter Kazanzides

Dr. Antony and other dermatology professors will join when available and as needed; can also email

Ruby and Liam will keep in contact over Slack

#### References

- 1. Zhang J, Rosen A, Orenstein L, et al. Factors associated with biopsy site identification, postponement of surgery, and patient confidence in a dermatologic surgery practice. J Am Acad Dermatol. 2016; 74:1185-1193.
- Chuang GS, Gilchrest BA. Ultraviolet-fluorescent tattoo location of cutaneous biopsy site. Dermatol Surg. 2012 Mar;38(3):479-83. doi: 10.1111/j.1524-4725.2011.02238.x. Epub 2011 Dec 15. PMID: 22171575.
- 3. Russell K, Schleichert R, Baum B, Villacorta M, Hardigan P, Thomas J, Weiss E. Ultraviolet-Fluorescent Tattoo Facilitates Accurate Identification of Biopsy Sites. Dermatol Surg. 2015 Nov;41(11):1249-56. doi: 10.1097/DSS.0000000000511. PMID: 26445291.
- 4. Rajput V. Transparent grid system as a novel tool to prevent wrong-site skin surgery on the back. J Am Acad Dermatol. 2019 Nov 8:S0190-9622(19)33013-0. doi: 10.1016/j.jaad.2019.11.011. Epub ahead of print. PMID: 31712173.
- 5. Navarrete-Dechent C, Mori S, Cordova M, Nehal KS. Reflectance confocal microscopy as a novel tool for presurgical identification of basal cell carcinoma biopsy site. J Am Acad Dermatol. 2019 Jan;80(1):e7-e8. doi: 10.1016/j.jaad.2018.08.058. Epub 2018 Sep 20. PMID: 30244067.
- 6. Lichtman MK, Countryman NB. Cell phone assisted identification of surgery site. Dermatol Surg. 2013;39(3 Pt 1):491-2.
- 7. Nijhawan RI, Lee EH, Nehal KS. Biopsy site selfies—a quality improvement pilot study to assist with correct surgical site identification. Dermatol Surg. 2015;41(4):499–504.
- 8. Highsmith JT, Weinstein DA, Highsmith MJ, Etzkorn JR. BIOPSY 1-2-3 in Dermatologic Surgery: Improving Smartphone use to Avoid Wrong-Site Surgery. Technol Innov. 2016;18(2-3):203-206. doi:10.21300/18.2-3.2016.203
- 9. DaCunha M, Habashi-Daniel A, Hanson C, Nichols E, Fraga GR. A smartphone application to improve the precision of biopsy site identification: A proof-of-concept study. Health Informatics J. 2020 Mar 16:1460458220910341. doi: 10.1177/1460458220910341. Epub ahead of print. PMID: 32175791.
- 10. Timerman D, Antonov NK, Dana A, Gallitano SM, Lewin JM. Facial lesion triangulation using anatomic landmarks and augmented reality. J Am Acad Dermatol. 2020 Nov;83(5):1481-1483. doi: 10.1016/j.jaad.2020.03.040. Epub 2020 Mar 25. PMID: 32222445.
- 11. Mcginness, J.L. And Goldstein, G. (2010), The Value of Preoperative Biopsy-Site Photography for Identifying Cutaneous Lesions. Dermatologic Surgery, 36: 194-197. https://doi.org/10.1111/j.1524-4725.2009.01426.x