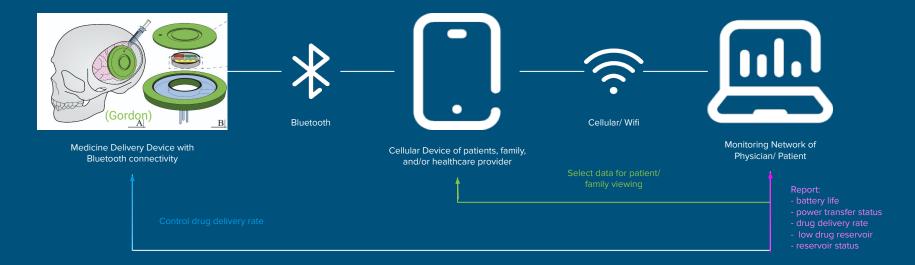
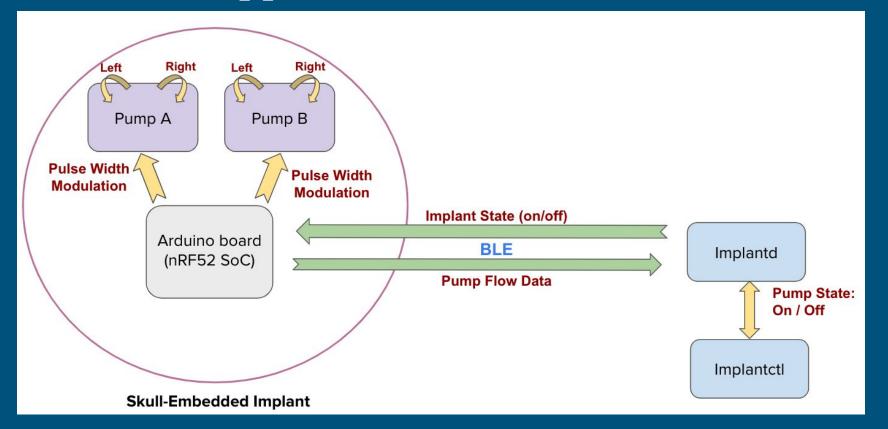
MRI-Compatible Skull-Embedded Implant for Direct Medicine Delivery Final Presentation: May 6, 2021 EN.601.456 Computer Integrated Surgery II Group 16: Disha Mishra, Henry Noren, Vivian Looi Mentors: Dr. Chad Gordon, Dr. Avi Rubin, Dr. Nathan Scott, Dr. Mehran Armand

Project Supervisor: Tushar Jois




Center for Neuroplastic Surgery Research

Our Goal

- 1. Implement code to use information from sensing pins to perform flow rate calculations every minute
- 2. Implement code to use Bluetooth Low Energy (BLE) to: (1) transmit flow rate estimates to clinicians and (2) send signals to turn implant pumps on and off

Technical Approach

Testing

Pump Functionality Verification

Test	Date Completed	Pass / Fail
Pump switches directions at max iterations	03/25	Pass
Pump switches directions at min threshold	03/25	Pass
Pumps A and B function independently of each other	04/01	Pass
No action when both pumps turned off	04/01	Pass
Performs flow rate calculation at expected intervals	04/05	Pass

Bluetooth Low Energy Connection Verification

Test	Date Completed	Pass / Fail
BLE Peripheral Connection	04/05	Pass
Turn LED on/off	04/12	Pass
Turn Pumps A and B on/off	04/12	Pass
Receives pump A rate at expected intervals over BLE	04/27	Pass
Receives pump B rate at expected intervals over BLE	04/27	Pass
Correct behavior upon BLE Peripheral disconnection	04/27	Pass

Validation: Feedback from project mentors on the clinical usability of the current implementation, integrate into current implant prototype for future swine studies.

Completed Items

	Activity	Target Date	Actual Completion Date	
Minimum	Implement code that only allows one pin to be active at one time in Runtime	3/3	3/5	
	Set-up two analog "sensing" pins and supporting code to sense empty state of the pump	3/11	3/15	Major Setbacks
	Implement code to record signal detections from pins and time between direction reversals	3/25	4/05	1
	Implement code to use information from sensing pins, to perform flow rate calculations every minute	4/07	4/20	
Expected	Implement code to use BLE to: 1) transmit flow rate estimates to clinicians, 2) receive signals to turn the pumps on and off	4/21	4/30	——— Major Progress
Maximum	Implement code that allows implant to receive and update to new target flow rate numbers given by clinician	5/01	Not Yet Completed	
	Employ low energy secure connections: patient privacy	5/13	Not Yet Completed	

Next Steps

- Upcoming iterations of swine studies in Summer/Fall 2021
 - Implement phase 3: Implant can receive new target flow rate values from user and modify pump settings to alter delivery, low energy secure connections for patient privacy
- Rigorous assessment of pump performance and BLE connection
 - Testing flow rates more accurately: flow meter
 - Observe power consumption to estimate implant lifespan before battery recharge/replacement is necessary
 - Observe received signal strength indication (RSSI) score and % of successful BLE advertisements at varying distances

Questions?

Reference List

[1] Hottinger AF, Stupp R, Homicsko K. Standards of care and novel approaches in the management of glioblastoma multiforme. Chin J Cancer. 2014 Jan;33(1):32-9. doi: 10.5732/cjc.013.10207. PMID: 24384238; PMCID: PMC3905088.

[2] Solid lipid nanoparticles for skin and drug delivery: Methods of preparation and characterization techniques and applications - ScienceDirect: https://www.sciencedirect.com/science/article/pii/B9780128162002000153

[3] Gordon, Chad. Magnetic Resonance Imaging Compatible, Convection-Enhanced Delivery Cranial Implant Devices and Related Methods. CraniUS®, 2020.

Weekly Meetings and Management Plan

Meetings:

- Weekly Neuroplastic Surgery Laboratory meetings on Monday 10AM
- Weekly meetings with Tushar: TBD, likely Wednesday 10AM
- Biweekly meetings for group: Monday 9PM, Thursday 10AM

Programs Used:

- Communication using Email and Slack
- Sharing code using GitHub
- Writing Reports and Documentation and Uploading onto CIS Wiki

Work was divided equally, but the following lists specific code contributions:

- Henry: Flow rate calculations and BLE peripheral set up
- Disha: Pump loop, pump sensing and BLE peripheral set up
- Vivian: Pump direction switches, setting up test plans