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A B S T R A C T

Ensuring a healthier working environment is of utmost importance for companies and global health organiza-
tions. In manufacturing plants, the ergonomic assessment of adopted working postures is indispensable to avoid
risk factors of work-related musculoskeletal disorders. This process receives high research interest and requires
extracting plausible postural information as a preliminary step. This paper presents a semi-automated end-to-end
ergonomic assessment system of adopted working postures. The proposed system analyzes the human posture
holistically, does not rely on any attached markers, uses low cost depth technologies and leverages the state-of-
the-art deep learning techniques. In particular, we train a deep convolutional neural network to analyze the
articulated posture and predict body joint angles from a single depth image. The proposed method relies on
learning from synthetic training images to allow simulating several physical tasks, different body shapes and
rendering parameters and obtaining a highly generalizable model. The corresponding ground truth joint angles
have been generated using a novel inverse kinematics modeling stage. We validated the proposed system in real
environments and achieved a joint angle mean absolute error (MAE) of ± ∘3.19 1.57 and a rapid upper limb
assessment (RULA) grand score prediction accuracy of 89% with Kappa index of 0.71 which means substantial
agreement with reference scores. This work facilities evaluating several ergonomic assessment metrics as it
provides direct access to necessary postural information overcoming the need for computationally expensive
post-processing operations.

1. Introduction

Musculoskeletal disorders (MSDs) are a common concern across
labor intensive industries. A recent statistical study performed by the
Bureau of Labor Statistics (BLS) demonstrated that MSD cases account
for 31% of all work-related injuries and illness cases (Bureau of Labor
Statistic, 2016). These injuries are most commonly in relation to the
muscular components of the Neck, Back, Arms and Legs (Luttmann
et al. Organizationet al.). In addition to the personal impact these in-
juries can have on workers, compensation costs and days-away-from-
work can greatly effect the productivity of the organization it self
(Bureau of Labor Statistic, 2016; Bernard and Putz-Anderson). The
manufacturing industries endeavor to constantly provide a safe working
environment via the early identification and intervention of proble-
matic procedures. Currently, proactive task planning using digital
human models and virtual facilities are helping minimize risk factors of
MSDs, however to ensure the maintenance of harm minimization, ad-
vancements in injury prevention technology must continue to be

implemented. This is due to the complex interactions between force and
frequency during automotive assembly tasks. Adopting ergonomically
invalid or awkward working postures while performing these manual
tasks have the potential to cause long term MSDs (Krüger and Nguyen,
2015; Bernard and Putz-Anderson; Luttmann et al. Organizationet al.).
Therefore, ergonomics specialists have been investigating methods and
tools to evaluate the adopted working posture and identify potential
MSDs risks.

The Rapid Upper Limb Assessment (RULA) (McAtamney and
Corlett, 1993) is one of the most popular ergonomic assessment tools in
the industry (Plantard et al. Multon; Liebregts et al., 2016). Despite its
limitations and low resolution capabilities to problematic working
procedures, RULA is simple, easy to compute and does not require prior
knowledge in biomechanics or ergonomics. The RULA score quantifies
the exposure of the adopted posture to risk factors of MSDs with more
focus on the neck, trunk and upper body limbs. It ranges from one to
seven representing the level of MSD risk and suggesting an action level
that describes whether a method of intervention is required
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(McAtamney and Corlett, 1993), with one being an acceptable posture
and seven requiring immediate intervention. Automating the RULA
score evaluation process has gained much attention from ergonomics
researchers (Manghisi et al. Monno; Plantard et al., 2017) to overcome
the intra- and inter-rater variability problem (Manghisi et al., 2017).
However, developing an automated RULA based ergonomic feedback
system requires estimating joint angles of the upper body parts.

Recent studies have proposed automating ergonomic assessment
methods relying on computer vision and machine learning techniques
(Diego-Mas and Alcaide-Marzal, 2014). In particular, the Kinect camera
alongside its software development kit (SDK) have been extensively
used to analyze the adopted posture and evaluate the RULA score
(Plantard et al., 2015; Liebregts et al., 2016; Plantard et al., 2017;
Manghisi et al., 2017; Abobakr et al., 2017a). The Kinect SDK tracks the
human body and estimates the 3D Cartesian coordinates of 20 joint
positions. It uses a random decision forest classifier to segment the body
into parts followed by a localization algorithm to infer joint positions
(Abobakr et al., 2017a). However, there are several difficulties resulting
from using the Kinect SDK. First, it relies on local body part detectors,
and hence may produce unrealistic skeletons in cases of occlusions due
to cluttered environments (Abobakr et al., 2018; Plantard et al., 2017).
Also, the Kinect SDK has a difficulty in tracking self-occluded postures
that have arms crossing, trunk bending, trunk lateral flexion and trunk
rotation (Manghisi et al., 2017). This requires applying preprocessing
operations to correct the resulting kinematic structure as suggested in
(Plantard et al., 2015; Plantard et al. Multon). Second, an additional
processing stage is required to convert 3D Cartesian coordinates of body
joint positions into joint angles. For instance, Plantard et al. (Plantard
et al., 2017) corrected Kinect data using the method presented in
(Plantard et al., 2017) and estimated missing anatomical landmarks
using the approach proposed in (Bonnechere et al., 2014), to make the
reconstructed skeleton compatible with the ISB recommendations (Wu
et al., 2005) and compute the joint angles. Clark et al. (2012) used the
inverse tangent method to convert 3D joint positions into joint angles.
Although these approaches have been successful in obtaining joint an-
gles of high quality, they may exhibit large errors from relying on the
Kinect skeleton data especially in cases of occluded postures (Plantard
et al., 2017; Manghisi et al., 2017). Improving the quality of the Kinect
skeleton data for ergonomic studies is an open area of research
(Plantard et al., 2017). This work focuses more on addressing limita-
tions of the Kinect V1 sensor, as it uses the structured light technology
which has been incorporated in a wide range of depth sensors (Abobakr
et al., 2018). This allows better generalization to different depth cam-
eras, for instance ASUS Xtion. The Kinect V2, on the other hand, uses
the time of flight imaging technology which helps produce more robust
skeleton data, however, it consumes more power and requires cooling
(Fankhauser et al., 2015).

In this paper, we propose a skeleton-free holistic posture analysis
system that accurately predicts body joint angles from a single depth
image without utilizing the temporal information between subsequent
images, as shown in Fig. 1. Although incorporating a temporal dy-
namics modeling stage can help ensure consistency of subsequent frame
predictions and achieve higher frame rates, tracking algorithms require
regular initialization to avoid leading to drift anomalies (Shotton et al.,
2013). The fundamental building block of the proposed method is a
cascade of two deep convolutional neural network (ConvNet) models.
The depth sensor produces two synchronized video feeds of RGB and
depth images. First, we segment the body from the background via
passing the RGB image to an object instance segmentation deep Con-
vNet model. This network computes segmentation masks for a pre-
defined set of objects in a given scene. We apply the obtained person's
segmentation mask to the corresponding depth image. Second, depth
values of the posture are encoded using a proposed depth encoding
algorithm. Third, the encoded image is passed through the second
ConvNet model to predict body joint angles. Finally, the estimated joint
angles are used to compute the RULA score. Thus, we simplify the

overall ergonomic evaluation procedure to be as simple as mapping
directly predicted joint angles into a RULA score. Using this score, the
MSD risk level is identified and a recommended action is suggested to
decrease the risk of work-related injuries as defined in (McAtamney and
Corlett, 1993). This is made possible via training our models on a large
amount of highly varied synthetic training images with ground truth
joint angles that have been biomechanically modeled using a novel
inverse kinematics step.

The remainder of this paper is structured as follows. Section 2 de-
scribes the proposed method and the used deep ConvNet models. Sec-
tion 3 presents the experiments and results. Key aspects and limitations
of the proposed method are discussed in Section 4. Section 5 highlights
the conclusion and future work.

2. Material and methods

We propose a vision based ergonomic posture assessment system
composed of two cascaded ConvNets; an object instance segmentation
network and a holistic posture analysis network. We utilize both the
RGB video and depth feeds of a low cost depth sensor. The input feeds
are synchronized which means that each RGB image has an associated
depth image. In particular, we employed the segmentation network to
detect and segment the person from an input RGB image and reject
other background objects. This network produces a segmentation mask
for the person in the scene which is then applied to the corresponding
depth image. Hence, the proposed system is background independent
and can be implemented in any environmental setting. Then, we trained
a deep ConvNet model to learn a direct mapping from the segmented
depth image of a human posture to body joint angles. The estimated
joint angles are used to ergonomically assess the adopted posture by
computing the RULA score. The main key for the proposed method is
relying on learning from synthetic training images with biomechani-
cally modelled body joint angles. Learning from synthetic depth images
has facilitated research and demonstrated effectiveness in several do-
mains (Saleh et al., 2016; Abobakr et al.,2016; Haggag et al. Haggag;
Shotton et al., 2013; Abobakr et al., 2017b).

2.1. Data preparation

Training deep learning models is an optimization process with re-
spect to millions of parameters. Therefore, they require large and highly
varied training datasets to achieve proper generalization and avoid the
risk of overfitting. However, collecting a labelled training dataset of
postures for workers of different anthropometric measures is an ex-
pensive process. It is also not feasible to cover all rendering scenarios
and simulations in real work environments. Also, manually labelling
each posture image with the respective joint angles is a hard task that
requires expert knowledge and can still remain prone to the inter- and
intra-rater variability problem (Manghisi et al., 2017).

Therefore, we build a synthetic data generation pipeline from which
we can sample large amounts of training images with plausible re-
ference joint angles. These joint angles are modeled using an inverse
kinematic (IK) method that adopts a skeletal model to constraint the
movement of body joints in a structured manner. Learning from syn-
thetic training images allows easily simulating a wide range of working
postures, anthropometric measurements and rendering parameters for
different tasks in model training. The pipeline also adds Kinect noise to
the generated data to ensure realistic rendering. Hence, this results into
more generalizable and highly invariant learning models at a negligible
data preparation cost. These models directly approximate the mapping
from a single depth image to a joint angles posture vector from which
we easily obtain the RULA score. Thus, the proposed method bypasses
the preprocessing steps that were used in the literature to obtain body
joint angles.

We cover a wide range of anthropometric measures to ensure that
our models generalize well to unseen body shapes. The weight is
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reported in kilograms and the remaining measurements are in cen-
timeters.

2.1.1. Synthetic depth generation
Synthetic depth images are generated via rendering animated

human models of different shapes and sizes. We used six virtual human
models; two males, two females and two neutral bodies generated using
MakeHuman software. The anthropometric measures of the used
models are detailed in Table 1. Since the depth images are texture in-
variant, we did not have to apply clothing styles.

The virtual models are animated into realistic postures via re-
targeting postural information from motion capture (mocap) sequences,
as shown in Fig. 2. A mocap sequence is a representation of human
movements captured using a marker-based motion capture system. It is
composed of the trajectories of 3D Cartesian coordinates of markers
attached to a subject. We used the Carnegie Mellon University (CMU)
mocap database (raphics Lab Motion C) in generating our training da-
taset. This database contains a wide range of human activities recorded
using a VICON mocap system for real human actors. It features a highly
varied set of postures that covers most of upper body articulations in-
volved in manual tasks. In earlier works (Abobakr et al., 2017a, 2017b),
we recorded our own mocap dataset for a worker performing 3 different
manual tasks. Nevertheless, it does not contain as much varied ranges
of postures as the CMU dataset. Therefore, to ensure a more generalized
solution, we decided to generate the postures using CMU mocap data.
However, the CMU database was recorded at a frame rate of 120 frames
per second (FPS), thus it contains many redundant postures. We down-
sampled the mocap sequences to 1 FPS to reduce this redundancy.
Then, we chose the most dissimilar 10 postures from each mocap se-
quence. This creates a dataset of 3650 sparse postures.

The selected postures are retargeted to articulate the 3D models. We
rendered synthetic images for the animated models using 8 virtual
Kinect depth sensors with view angles ranging from 0 to ∘315 with step

∘45 and different depth distances. The maximum depth distance for
rendering was set to 10m. Fig. 2 depicts the virtual scene and the setup
of virtual Kinect depth cameras used in generating our dataset. The

scene is created and rendered using the open source software BlenSor
(Gschwandtner et al., 2011).

The rendered depth images are clean with high quality depth
measurements. However, deep learning models are generally sensitive
to noise patterns augmented on the input data. This is an unsolved
problem that is receiving high research interest. We anticipate that to
cause an issue with our models, as the real depth sensors exhibit noise
due to several environmental effects such as illumination, infrared (IR)
interference from ambient light sources and non-IR-reflecting materials
(Shotton et al., 2013). Therefore, to ensure resilience with real depth
cameras, we utilized the sensor simulation capabilities of BlenSor to
obtain Kinect scans that resemble the real sensor output. For each scene
scan, BlenSor generates a clean depth image and two noisy images
using a realistic and statistically verified noise model (Gschwandtner
et al., 2011). This setting creates a synthetic dataset of 350K images
that we split into 280K for training and 70K images for validation.

2.1.2. Inverse kinematics
Deriving a deep learning model for a RULA based ergonomic feed-

back system requires kinematically plausible reference joint angles for
training. However, the reference data obtained from the marker-based
mocap system represents the 3D Cartesian coordinates of the attached
markers. Therefore, an inverse kinematics (IK) step is proposed to
transform the 3D marker positions into joint angles. This step employs a
skeletal model that is augmented with a set of virtual markers re-
presenting bony landmarks. Each virtual marker corresponds to a
marker on the mocap data. The skeletal model is animated by mini-
mizing the error between the corresponding marker positions in the
skeletal model and in the captured data. The error minimizing process
is constrained by different joint angle constraints, i.e. each joint can
have a limited range of motion to ensure a natural, realistic human
movement. This is done through solving a weighted least-squares pro-
blem using a generic quadratic programming solver with a convergence
criterion of −10 4 and a limit of 1000 iterations, which is implemented in
OpenSim platform (Delp et al., 2007; Seth et al., 2011; Reinbolt et al.,
2011). The minimization function is

∑ −
∈

w x x q( ) ,
i m

i i
exp

i
2

(1)

where m is the set of markers, ωi is a weighting factor, q represents the
required coordinates, xi

exp and x q( )i are the ith marker position in the
captured marker trajectory and on the model, respectively.

Biomechanical analysis and simulation has been used extensively in
assessing workplace activities and activities of daily living (Nimbarte
et al., 2013; Vignais et al., 2013; Weston et al., 2017; Hossny et al.,
2012; Nahavandi et al., 2016). Therefore, there are various bio-
mechanical models for different parts of the human body such as the
upper limbs (Holzbaur et al., 2005; Wu et al., 2016), lower limbs (Delp

Fig. 1. Ergonomic posture assessment
method overview. First, we segment the
body from the background via passing the
RGB image to an object instance segmen-
tation deep network. This network com-
putes segmentation masks for a predefined
set of objects in a given scene. We apply the
obtained person's segmentation mask to the
depth image. Second, depth values of the
posture are encoded using our proposed
depth encoding algorithm. Third, the en-
coded image is passed through our joint
angles regression (JAR) deep learning
model to predict body joint angles. Finally,
the estimated joint angles are used to com-
pute the RULA score and evaluate the ex-

posure to MSDs risk factors. (Best viewed in color). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)

Table 1
Anthropometric measures of 3D virtual human models used in generating
training images.

3D Model Weight Height Chest Waist Hips

Male_1 107 188 109 89 104
Male_2 84 173 108 98 106
Female_1 78 184 99 78 103
Female_2 61 159 64 87 106
Neutral_1 90 191 103 83 103
Neutral_2 71 166 100 92 105
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et al., 1990), and also the eyes (Iskander et al., 2017, 2018a, 2018b).
The recorded human activities are simulated and analyzed via the in-
verse kinematics modelling performed on the skeleton of the Upper and
Lower Body Model (ULBmodel) available in OpenSim. This model is an
almost full body model, since the neck degree of freedoms are not in-
cluded. It is a combination of the upper limb model developed by
Holzbaur et al. (2005) with the lower limb model developed by Delp
et al. (1990).

We are interested in the joint angles that rotate the trunk, shoulders,
elbows, and wrists, shown in Fig. 3. The trunk has three degrees of
freedom (DoF), as shown in Fig. 3 (a), flexion, lateral bend and twist.
The shoulder being a complex joint, needed two angles to describe the
elevation movement, the plane of elevation and the shoulder elevation
angle (Holzbaur et al., 2005), as shown in Fig. 3(b). Shoulder rotation
was ignored since it is not used in RULA scoring. The lower arm
movement is described using the elbow and wrist joints. Fig. 3(c)

illustrates the configurations of the elbow flexion angle, and Figures
(d)-(f) show the configurations of the wrist twist, deviation and flexion
joints (Holzbaur et al., 2005). To ensure smooth natural movement, we
applied kinematic constraints on the range of motion for the upper body
joints, as discussed in (Rajagopal et al., 2016; Holzbaur et al., 2005).
The used dynamic ranges of the upper body joints are listed in Table 2.

Kinematic constrains applied on the range of motion for the upper
body joint angles to ensure smoother movements (Rajagopal et al.,
2016; Holzbaur et al., 2005). L/R prefixes refer to left and right sides
respectively.

The kinematic modeling of mocap sequences allowed obtaining ki-
nematically plausible joint angles. The generated synthetic depth
images and corresponding joint angles constituted a large labelled da-
taset for training the deep ConvNet regression model.

Fig. 2. Synthetic depth generation. In BlenSor, we built a scene containing one 3D model at a time. The model is articulated using retargeted CMU mocap data. We
render the scene using eight Kinect sensors with view angles ranging from 0 to ∘315 with step 45° at different depth distances. Kinect noise is augmented during the
rendering process to ensure generalization to data acquired using real depth cameras. (Best viewed in color). (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 3. The different joint angles used. (a) The trunk
has 3 DoF, side bending, flexion-extension and
twisting. (b) The shoulder joint utilized two angles,
the shoulder elevation angle and the elevation plane
angle. (c) The elbow rotates in a flexion-extension
direction only. The rest of the figures shows the 3
DoF of the wrist. (d)–(f) show wrist twist, deviation
and flexion, respectively. (Best viewed in color). (For
interpretation of the references to color in this figure
legend, the reader is referred to the Web version of
this article.)
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2.2. Encoding depth images

The use of depth imaging technologies offers several advantages.
First, depth cameras operate independently of scene lighting condi-
tions. Second, they are color and texture invariant (Shotton et al.,
2013). Therefore, it is much easier to synthesize realistic depth images.
Third, depth sensors facilitate the background subtraction which is an
essential preprocessing step for our method, as it is not feasible to
generate enough diverse background scenarios for training. Never-
theless, the main limitation of depth images is the weak local gradient
information of objects. This issue limits the generalization capabilities
of the ConvNet models and biases the network towards detecting object
silhouettes (Abobakr et al., 2016).

Therefore, deep learning from depth images has become an active
area of research (Abobakr et al., 2016; Couprie et al., 1301; Farabet
et al., 2013; Gupta et al., 2014; Eitel et al., 2015). Farabet et al. (2013)
suggested an approach to fuse the depth information with RGB images
to obtain more expressive learning signal. This method led to good
results on the challenging semantic segmentation tasks. On the other
hand, it does rely on learning from two modalities. Gupta et al. (2014)
proposed extracting three features from depth pixels; horizontal dis-
parity, surface normal and height above the ground. Their approach
demonstrated better performance than learning from either raw depth
or replicated depth over three channels. However, computing the three
features is computationally expensive (Eitel et al., 2015).

Recently, RGB colorization methods (Eitel et al., 2015; Abobakr
et al., 2016) achieved better generalization performance and compu-
tational efficiency than the aforementioned approaches. In these
methods, the depth pixels are shifted to −(0 255) range and a jet color
map is applied to represent each pixel using three RGB channels. This
results into a colorized depth image that provides much richer contrast
information.

In this work, we propose a normalized encoding method that en-
sures depth invariant color encoding. The proposed method achieves
better and faster generalization performance than the most widely used
plane RGB colorization method (Gupta et al., 2014). First, we stan-
dardize the depth image by removing the mean and scaling to unit
variance. This step ensures robustness to noise that the depth sensor
may exhibit and faster convergence. Second, the depth values are
transformed to −(0 255) range and a jet color map is applied. Fig. 4
shows example results of applying the proposed colorization method on
synthetic depth images.

2.3. Joint angles estimation using ConvNet

The deep convolutional neural networks (ConvNet) is a class of deep

learning models that has a high capacity to approximate an end-to-end
mapping function from raw input to target output. This is achieved via
a stack of computational layers that learns a hierarchy of features from
raw input data (LeCun et al., 2015).

A ConvNet model is a composition of convolution (CONV), sub-
sampling or pooling (POOL) and optionally fully connected (FC) layers
at the end. The output of each layer is called feature maps that are
passed through a non-linear transformation such as the rectified linear
unit (ReLU). An efficient composition of such transformations is cap-
able of approximating complex mapping functions regardless of its
complexity (LeCun et al., 2015). Each CONV layer attempts to learn
different patterns from its input feature maps, hence building more
abstract representation from the raw data. CONV layers are para-
meterized by kernel size or local receptive field and number of kernels.
Each kernel learns a set of weights to extract a certain feature wherever
it appears in the input and produces a feature map. The spatial POOL
layer reduces the dimensionality of feature maps via merging se-
mantically similar features. The two main POOL operations are average
or max pooling. Deep ConvNet models are prone to overfitting due to
the high learning capacity they provide. Therefore, dropout (Srivastava
et al., 2014) and batch normalization (BN) (Ioffe and Szegedy, 2015)
layers have been recently introduced to control the effect of overfitting
and ensure faster convergence. Despite their complexity, deep ConvNet
models are end-to-end trainable architectures that can be optimized
using generic optimization techniques such as the stochastic gradient
descent (SGD).

The ergonomic posture assessment task is formulated as a su-
pervised regression problem. The input is a depth image of the posture
and the output is the joint angles vector required for computing the
RULA score. Therefore, given a dataset = =D x t{( , )}i i i

N
1 of N samples,

where ∈x Ri
d is an input depth image and = …t a a a( , , ., )i

k(1) (2) ( ) , ∈t Ri
k

is the reference vector of =k 15 joint angles, we approximate a function
that maps unseen input images of working postures to joint angles. The
resulting posture vector is used to compute the RULA score and identify
the MSD risk level and the urgency of intervention to decrease the risk.

2.3.1. Deep residual learning: ResNet
We trained the deep residual network (ResNet) model (He et al.,

2016) to map from an input depth image to body joint angles. The
ResNet is the state-of-the-art ConvNet architecture for visual perception
tasks (He et al., 2016). The design principles of the ResNet follow the
residual learning paradigm where layers learn a residual function with
reference to layers input instead of learning direct mapping. The ResNet
model is easy to optimize, computationally efficient and achieves sig-
nificant performance gains with increased network depth (He et al.,
2016).

The ResNet model is a composition of stacked residual blocks. The

Table 2
Kinematic range constraints of upper body joints.

Joint name Dynamic range

Trunk rotation − ∘ ∘[ 90 , 90 ]
Trunk twist − ∘ ∘[ 90 , 90 ]
Trunk bend − ∘ ∘[ 90 , 90 ]
L. Elevation − ∘ ∘[ 90 , 130 ]
R. Elevation − ∘ ∘[ 90 , 130 ]
L. Shoulder ∘ ∘[0 , 180 ]
R. Shoulder ∘ ∘[0 , 180 ]
L. Elbow ∘ ∘[0 , 130 ]
R. Elbow ∘ ∘[0 , 130 ]
L. Wrist flexion − ∘ ∘[ 70 , 70 ]
R. Wrist flexion − ∘ ∘[ 70 , 70 ]
L. Wrist deviation − ∘ ∘[ 10 , 25 ]
R. Wrist deviation − ∘ ∘[ 10 , 25 ]
L. Wrist twist − ∘ ∘[ 90 , 90 ]
R. Wrist twist − ∘ ∘[ 90 , 90 ]

Fig. 4. Example results of applying the proposed colorization method on syn-
thetic depth images. (Best viewed in color). (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this
article.)
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most common architecture of the residual block is shown in Fig. 5. This
block implements the design principles of the ResNet: residual learning
and identity mapping via shortcut connections. Given a mapping
function H x( ) to be learned, the residual block tries to learn the re-
sidual = −F x H x x( ) ( ) . Therefore, the function to be learned becomes

+F x x( ) (He et al., 2016). The identity mapping of the input x is im-
plemented via parameters-free shortcut connections. The depth of the
ResNet model is of crucial importance and is defined by the number of
stacked residual blocks.

In our experiments, we built two ResNet models of depth 18 and 34
to estimate body joint angles. The differences between both networks
are the number of CONV filters and the replication pattern of the re-
sidual block. ResNet-18 has 8 stacked residual blocks giving a total of
18 trainable layers. This model is described as: {RGB input - (CONV–BN
- ReLU - max POOL) - 8 residual blocks - average POOL - 15 regressors}.
On the other hand, the ResNet-34 model is described as: {RGB input -
(CONV–BN - ReLU - max POOL) - 16 residual blocks - average POOL -
15 regressors}.

2.3.2. Models training
We initialized our models with pre-trained feature extractors that

were optimized on the ImageNet dataset to discriminate between 1000
natural object categories from RGB images. This practice is known as
fine-tuning and it has been proven more effective for many applications
than starting the training with random weight initialization (Abobakr
et al., 2016). However, it requires relatively large amounts of training
data to tune the overall model, the feature extractor and the regressor,
to predict joint angles from an input depth image and achieve the de-
sired generalization performance. Therefore, using the data generation
pipeline described in Section 2.1, we generated a synthetic dataset of
350K labelled images covering 8 camera view angles from 0 to ∘315 with
step ∘45 and featuring 6 subjects of different anthropometric measures,
detailed in Table 1. The dataset is split into 280K for training and 70K
for validation.

The training objective function is minimizing mean square error
over a training mini-batch:

∑= −
=

E
N

H x W t1 ( ( , ) )train
i

i i
1

2

(2)

where N is mini-batch size, H x W( , )i is the predicted joint angles vector
for sample xi given the set of weights W and ti is the target joint angles
vector. We used SGD optimization with an initial learning rate of 0.01,
decaying by a factor of 10 every 50 epochs, mini-batch size of 32,
weight decay of 0.0001 and momentum of 0.9.

2.4. Background rejection

Generating synthetic training images with different backgrounds is

challenging due to the wide range of variations in scene setups and
object configurations that may occur in real work environments.
Therefore, the posture analysis network is trained on a background-free
images. This focuses the analysis to the posture in the input image and
requires removing the background during real time deployments.
Several approaches in the literature (Abobakr et al., 2016, 2018) made
use of the fact that depth images facilitates background subtraction.
These approaches require modelling the background as an initial cali-
bration stage. Then, at run time, the modelled background is subtracted
and post processing operations follow to remove any remaining re-
siduals. The main limitations for these approaches are; requiring cali-
bration whenever the scene configuration changes which is not prac-
tical in manufacturing environments and the run-time complexity of the
post processing operations.

Towards obtaining more generic solution, we employ the state-of-
the-art fully convolutional instance segmentation network (FCIS) (Li
et al., 2017) to segment the person from the background. It has
achieved state-of-the-art performance in terms of accuracy and effi-
ciency on the COCO 2016 segmentation challenge administered by
Microsoft (Lin et al., 2014). The FCIS network detects and produces
segmentation masks of all objects in the scene including the person of
interest. The person mask is applied on the depth image and hence
obtain a background-free image. This allows the system to operate in
dynamic environments without the need for background calibration.
Fig. 6 shows sample person segmentation and background rejection
results using FCIS with a ResNet-101 (He et al., 1703) backbone net-
work.

2.5. RULA score computation

The predicted body joint angles are the input for the RULA score
computation module, which represents the final stage of the proposed
system. Fig. 7 shows a snapshot of the proposed system in action. The
grand RULA score is computed using the angular thresholds and ad-
justment parameters defined in the standard RULA worksheet
(McAtamney and Corlett, 1993). It is a single page worksheet that di-
vides the body into two sections.

The first section A includes the upper arm, lower arm and wrist
segments. The estimated elevation plane and shoulder elevation angles
are used to score the upper arm position and detect the shoulder raise
and upper arm abduction adjustment parameters. As shown in Fig. 3(b),
the upper arm position is scored using the standard RULA thresholds on
the predicted shoulder elevation angle. To detect the upper arm ab-
duction, we use the elevation plane angle that determines the plane in
which the arm is moving. The upper arm is considered abducted if the
elevation plane angle is ∘0 indicating frontal plane movement, and the
shoulder elevation angle is greater than ∘45 as suggested in (Vignais
et al., 2017). The shoulder raise occurs when the arm is raised upward
(Vignais et al., 2017). We assume that to happen when the arm is above
the horizontal, which refers to a shoulder elevation angle greater than

∘90 . Shoulder raise in the neutral posture is not considered in this study.
The arm support parameter is disabled by default and can be enabled by
the operator via the graphical user interface (GUI).

The lower arm is scored based on the predicted elbow flexion angle,
as shown in Fig. 3(c). The arms crossing parameter is also disabled by
default and can be enabled by the operator. For the wrist position, we
apply the thresholds on the predicted wrist flexion angle as shown in
Fig. 3(f). The proposed method predicts the wrist radio-ulnar deviation
angle, as shown in Fig. 3(e). Therefore, we activate the wrist bending
from the midline flag when this angle is below− ∘5 (radial deviation) or
greater than ∘10 (ulnar deviation) as defined in (Vignais et al., 2017).
However, we adjusted the radial deviation threshold to − ∘5 compared
to the − ∘10 value defined in (Vignais et al., 2017) due to the range of
motion for our wrist deviation joint which is − ∘ ∘[ 10 , 25 ]. Finally, the
proposed approach also estimates the wrist twist, as shown Fig. 3(d). It
is considered a mid-range if the absolute value of the predicted twist

Fig. 5. The architecture of the residual learning block (He et al., 2016). Block
layers learn a residual mapping function with reference to the block input. The
identity shortcut implements a parameter-free mapping of the input.
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angle is below ∘45 , otherwise a near end of range twist is considered.
The second section B covers the neck, trunk and leg segments. The

trunk position is scored directly using the estimated flexion, bend and
twist angles, as shown in Fig. 3(a). The trunk lateral bend and twist

have binary flags that contribute to the RULA score. We activate these
flags based on a threshold value of 10° on the predicted bend and twist
angles, as suggested in (Vignais et al., 2017). For the neck, due to the
aforementioned neck joint limitation, we set its joint angle to be in

Fig. 6. Example background rejection results on real RGB
and depth image pairs. The FCIS network computes seg-
mentation masks for scene objects (Li et al., 2017). We
use the person mask to segment the person and remove
any other background objects. The resulting human pos-
ture is then pre-processed using the proposed colorization
method and passed via the trained ConvNet model to
estimate body joint angles. (Best viewed in color). (For
interpretation of the references to color in this figure le-
gend, the reader is referred to the Web version of this
article.)

Fig. 7. The proposed system in action. A recorded session is fed to the software for analysis. From a single RGB-D images pair, we estimate the body joint angles of the
segmented person and compute the RULA score via the standard angular thresholds and the adjustment parameters. (Best viewed in color). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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range ∘ ∘[0 , 10 ] with neither twisting nor bending, and allowed the op-
erator to override these settings through the GUI. Finally, the legs and
feet are considered supported and can be changed by the operator
through the GUI.

Each of these sections has a corresponding table that is used to
obtain an intermediate score based on the scores for its segments. This
score is further adjusted according to additional parameters such as
muscle use, force load and frequency of operation. These parameters
contribute effectively to the grand RULA score. However, they are
difficult to be automated (Manghisi et al., 2017; Plantard et al., 2017).
Therefore, we have set a default setting for these parameters and al-
lowed the operator to override them in the GUI, as shown in Fig. 7. The
third and final table returns the grand RULA score associated with the
previous two scores. This score is mapped to an action level that in-
dicates the urgency of the intervention required to decrease the like-
lihood of MSD injuries, as defined in (McAtamney and Corlett, 1993)
and listed in Table 3.

The RULA grand score and action levels indicate the risk of MSD
injuries and the urgency of intervention to reduce this risk
(McAtamney and Corlett, 1993; Manghisi et al., 2017).

3. Results

We have trained a deep ConvNet model on a synthetic training
dataset to predict 15 body joint angles from a single depth image. The
estimated joint angles are then used to compute the RULA score for the
adopted posture. In this section, we evaluate the performance of the
proposed method and explore the generalization capabilities on a real
test dataset. Table 4 provides a detailed description of the synthetic and
real datasets used in training and evaluating the proposed system. We
also examine the effect of several aspects on the generalization per-
formance of our method. We report the mean absolute (MAE) and root
mean square (RMSE) error rates.

Details of the datasets used in training and evaluating the proposed
system. We report the number of subjects, number of samples, image
modalities, the mocap system used in collecting the motion sequences
and the depth sensor used for generating or recording the images.

3.1. Comparison between ResNet-18 and 34

Fig. 8 shows a per-joint MAE of both models on the synthetic vali-
dation set. The reported errors are scaled by the biomechanical range of
motion of the joints, listed in Table 2. These results demonstrate that
deeper ResNet-34 achieves better generalization performance than
ResNet-18 for all body joints.

There are several reasons for ResNet-34 performing better than

ResNet-18. First, deeper models have a higher learning capacity and
can learn more powerful representations. Second, the employed deep
residual learning framework makes efficient use of network depth while
ensuring easy optimization and fast convergence (He et al., 2016).
However, after a certain extent, the models saturate and the extra
runtime computational cost resulting from going deeper becomes a
challenge. Also, in some cases this may lead to performance degrada-
tion due to overfitting.

The improvements that ResNet-34 provides are slightly significant
compared to the added runtime computational complexity, as shown in
the benchmark in Table 5. That makes it challenging to deploy the
overall system on embedded devices. Further, RULA scores for body
limbs are evaluated based on angular thresholds, which means that we
can compensate these little improvements without affecting the final
outcome of the RULA metric. Therefore, we chose to use ResNet-18 for
body joint angles regression. The remainder of this section investigates
the effect of depth preprocessing and the generalization capabilities of
ResNet-18 to real depth images.

Benchmarking ResNet-18 and ResNet-34 models for joint angles
prediction. Errors are evaluated on the 70K validation images and none
of these images is included in models training. As shown, ResNet-34 has
a slightly better generalization performance than ResNet-18 with extra
runtime computational cost. JTX2 refers to the embedded Nvidia Jetson
TX2 GPU device.

3.2. The effect of depth encoding

We compared the effect of the proposed depth encoding method
with the standard RGB colorization method (Gupta et al., 2014;
Abobakr et al., 2016). We trained the ResNet-18 model using each
encoding method on the same training set. Table 6 reports the predic-
tion errors achieved using each encoding method on the validation set.
The proposed colorization method achieves better generalization per-
formance and faster convergence than the RGB colorization approach.

We compared the proposed depth encoding method with the state-
of-the-art RGB colorization method (Gupta et al., 2014). The reported
average joint angle prediction MAE and RMSE errors are evaluated
using the ResNet-18 model trained on the synthetic dataset.

3.3. Generalization to real data

To validate the performance of the proposed method on real depth
images, we recorded a real dataset of 24K postures for 6 subjects of
different body shapes while doing a set of manual tasks. The anthro-
pometric characteristics of the real test subjects are detailed in Table 7.
We used an XSENS mocap system and an ASUS Xtion depth camera for
recording the images. The three feeds are synchronized in such a way
that each posture frame in the mocap sequence has a corresponding
RGB and depth images pair from the camera. Joint angles for the re-
corded motion sequences are generated using the biomechanical model
described in Section 2.1.2.

We collected the real test dataset from 6 male subjects with different
body shapes and sizes. The reported measurements are in centimeters
and the weight is in kilogram. The Sh. Prefix refers to the shoulder body
part.

We fine-tune the trained ResNet-18 model on the recorded real

Table 3
RULA action levels and urgency of intervention.

Score Level Urgency of intervention

1–2 1 the posture is acceptable if it is not maintained or repeated for
long periods

3–4 2 further investigation is needed and changes may be required
5–6 3 investigation and changes are required soon
7 4 investigation and changes are required immediately

Table 4
Description of datasets used in this study.

Dataset Subjects Samples Modalities MoCap system Depth camera

Synthetic training 6 280,000 Depth VICON (raphics Lab Motion C) Virtual Kinect
Synthetic validation 6 70,000 Depth VICON (raphics Lab Motion C) Virtual Kinect
Real fine-tuning 6 19,000 RGB, Depth XSENS ASUS Xtion
Real validation 6 5000 RGB, Depth XSENS ASUS Xtion
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dataset. The dataset is split into 19K postures for training and 5K for
validation, as detailed in Table 4. The motivation is to capture the data
distribution of the real depth sensor and to learn the shape difference
that the segmentation mask may cause. Hence, this ensures proper
generalization to real data. It is worth noting that this is not a cali-
bration process, so it is not required during the real time deployment.
We record a final average MAE error of ± ∘3.19 1.57 and an average
RMSE of ± ∘4.27 2.32 in real test environments. Table 8 details a per-
joint breakdown of these results. Since the joint angles have different
ranges of motion, we report the error of each joint scaled by its dynamic
range, defined in Table 2. The results demonstrate low prediction error
rates for most of the joints and difficulties in estimating elbow and wrist
joint configurations. However, as the RULA score is evaluated based on
angular thresholds, it is not susceptible to small error variations. Fur-
ther, these errors are highly unlikely to change the final RULA score. As
a result, the proposed system achieves a RULA grand score prediction
accuracy of 89% with a substantial Kappa index of 0.71. This accuracy

represents the average percentage of correct RULA score predictions
over both right and left body sides in comparison with scores computed
using reference mocap based joint angles. The RULA scores are com-
puted using the standard angular thresholds and the default parameter
settings described in Section 2.5.

Fig. 8. Comparison of the generalization performance of the two deep residual models on the validation set of 70K images. We report the MAE error of each joint
scaled by its range of motion, defined in Table 2. None of the validation images is included in training our models.

Table 5
Benchmarking deep residual models for holistic ergonomic posture analysis.

Method Capacity (Milions) Prediction Errors FPS

Parameters Neurons MAE RMSE Core-i7 CPU Titan-X GPU JTX2

ResNet-18 12 12 ±2.60 1.44 ±3.45 2.07 20 250 50
ResNet-34 22 18 ±2.31 1.31 ±3.07 1.86 10 125 30

Table 6
The effect of depth encoding on prediction errors of ResNet-18.

Encoding method MAE RMSE

RGB Colorization (Gupta et al., 2014) ±3.00 1.61 ±3.98 2.32
Proposed ±2.60 1.44 ±3.45 2.07

Table 7
Anthropometric measures of the real test subjects.

Subject Height Weight Arm Span Hip Height Hip Width Sh. Height Sh. Width

1 168 75 166 94 34 135 47
2 182 88 182 90 27 155 48
3 167 97 168 91 28 135 37
4 184 95 180 102 30 157 39
5 175 78 178 97 27 144 38
6 179 85 184 102 31 153 48

Table 8
Prediction errors on real data.

Joint name MAE (deg.) Scaled MAE
(%)

RMSE (deg.) Scaled RMSE
(%)

Trunk rotation ±3.23 3.34 ±1.79 1.86 4.64 2.58
Trunk twist ±3.13 3.05 ±1.74 1.70 4.37 2.43
Trunk bend ±2.30 2.09 ±1.16 1.28 3.10 1.72
L. Elevation ±4.13 4.70 ±1.88 2.14 6.26 2.84
R. Elevation ±4.04 4.34 ±1.83 1.98 5.93 2.70
L. Shoulder ±4.19 4.32 ±2.33 2.40 6.02 3.34
R. Shoulder ±4.27 4.65 ±2.40 2.59 6.31 3.51
L. Elbow ±4.14 4.54 ±3.18 3.49 6.14 4.72
R. Elbow ±4.19 4.97 ±3.22 3.82 6.50 5.00
L. Wrist flexion ±2.59 2.46 ±1.85 1.76 3.58 2.56
R. Wrist flexion ±2.76 2.72 ±1.97 1.94 3.87 2.77
L. Wrist deviation ±1.06 1.06 ±3.03 3.04 1.50 4.29
R. Wrist deviation ±1.15 1.22 ±3.29 3.49 1.68 4.79
L. Wrist twist ±3.05 2.75 ±1.70 1.53 4.11 2.28
R. Wrist twist ±3.58 3.21 ±1.99 1.79 4.81 2.67
Average ±3.19 1.57 ±2.23 1.12 ±4.27 2.32 ±2.94 1.64
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Per-joint MAE prediction errors of the proposed system on real
depth images. The scaled errors, by ranges of motion in Table 2, show
that elbow and wrist joints are the most challenging for prediction. L/R
prefixes refer to left and right sides respectively.

We report RMSE of RULA scores, Po and Cohen's kappa index, be-
tween RULA scores computed using predicted joint angles and re-
ference joint angles generated from recorded mocap data in real en-
vironment.

3.4. RULA score analysis

Further, we study the effect of the reported joint angle errors on the
final RULA scores in real conditions. Table 9 reports the RMSE, accu-
racy or agreement values po and level of agreement (Cohen's kappa)
(Cohen, 1960), between RULA scores computed from estimated joint
angles using the proposed method and scores computed using reference
joint angles. The reference joint angles are very accurate as they are
generated from recorded mocap sequences in real conditions. Thus, the
mocap system represents the expert observations. We achieve high
grand score accuracy and a substantial strength of agreement according
to the scale of (Landis and Koch, 1977).

3.5. Qualitative results

Fig. 9 shows example inferences of the proposed ergonomic posture
analysis system on a set of real frames, where the first two rows display
input RGB and depth image pairs captured using an ASUS Xtion sensor.
The third row displays the encoded posture after rejecting the back-
ground. The colorized images are then passed to the ResNet-18 model
for estimating the body joint angles. Predicted joint angles are applied
to the biomechanical model in OpenSim for comparison with the input
posture in the forth row. The proposed method does not rely on either
joint positions prediction or posture calibration. Moreover, using the
holistic posture analysis approach allows the system to be robust in

Table 9
The effect joint angle errors on RULA postural scores.

RULA Score RMSE Accuracy Po kappa (k)

Upper arm Right 0.29 0.92 0.88
Upper arm Left 0.32 0.90 0.86
Lower arm Right 0.22 0.95 0.82
Lower arm Left 0.20 0.96 0.84
Wrist score Right 0.50 0.78 0.67
Wrist score Left 0.50 0.78 0.67
Score A (arm and wrist) Right 0.39 0.86 0.78
Score A (arm and wrist) Left 0.41 0.84 0.76
Score B (neck, trunk and legs) 0.64 0.82 0.63
RULA Grand Score Right 0.49 0.86 0.66
RULA Grand Score Left 0.51 0.85 0.67

Fig. 9. Example ergonomic posture analysis on real
test images. The first two rows display input RGB and
depth image pairs captured using an ASUS Xtion
sensor. The results of person segmentation followed
by depth encoding preprocessing are shown in the
third row. The forth row shows predicted joint angles
applied to the biomechanical model in OpenSim. The
transparent skeleton represents the reference joint
angles, and the displacement between skeletons is
the model prediction error. The RULA scores are
computed using the default parameter settings de-
scribed in Section 2.5. (Best viewed in color). (For
interpretation of the references to color in this figure
legend, the reader is referred to the Web version of
this article.)
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cases of invisible body parts due to self-occlusions or cluttered en-
vironments, as shown in Fig. 10.

3.6. Comparison with the Kinect SDK in occluded cases

The Kinect depth sensor and its SDK have demonstrated effective-
ness and acceptable accuracy when used in computerizing observa-
tional ergonomic assessment metrics (Plantard et al., 2017). However,
the Kinect SDK has a limitation in estimating joint positions of occluded
postures due to clutters or self-occlusions (Plantard et al., 2017).
Therefore, we followed the holistic reasoning approach to learn kine-
matically valid skeletal structures via exploiting the full posture con-
text. Hence, this ensures robustness to invisible body parts due to oc-
clusions or cluttered environments. Fig. 11 shows example inferences
using the Kinect SDK and the proposed method respectively, in chal-
lenging conditions. This figure confirms the Kinect difficulties discussed
in this study and surveyed in the literature (Plantard et al., 2017;
Manghisi et al., 2017). It also demonstrates challenges of Kinect SDK to
estimate posture information from a side view of the human body.

3.7. Frame rate

The trained ergonomic posture analysis model ResNet-18 achieves
up to 30 FPS on a MacBook Pro with Core-i7 CPU, up to 250 FPS on a
Nvidia Titan X GPU and 50 FPS on the Jetson TX-2 embeded GPU de-
vice. The reported frame rate includes the preprocessing depth en-
coding step. However, the main bottleneck is the FCIS segmentation
network due to relying on ResNet-101 as a backbone model. The overall
system runs at a frame rate of up to 5 FPS on the TITAN-X GPU.
Therefore, the proposed system supports an offline analysis mode for
recorded sessions.

4. Discussion

This paper proposed a semi-automated ergonomic assessment
system of adopted working postures. The proposed method analyzes the
posture holistically and estimates body joint angles directly from a
single depth and RGB image pair. Hence, we do not exploit temporal
dependencies or skeleton data from the Kinect SDK. The estimated joint
angles are used to compute the RULA score, the MSD risk level and
subsequently the urgency of intervention required to reduce the risk of
injury. The RULA score is computed based on the standard angular

Fig. 10. Example system inferences in case of occlusions. The proposed method shows robustness to invisible body parts due to self-occlusions or clutters. The forth
row shows predicted joint angles applied to the biomechanical model in OpenSim. The RULA scores are computed using the default parameters setting described in
Section 2.5. The transparent skeleton represents the reference joint angles, and the displacement between skeletons is the model prediction error. (Best viewed in
color). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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thresholds and a default and easily adjustable parameters setting.
The proposed mapping, from input images to joint angles, has been

approximated via training deep machine learning models on a highly
varied set of synthetic depth images with biomechanically modelled
reference joint angles. The biomechanical modelling stage ensures
learning valid skeletal structures. To the best of our knowledge, this is
the first work that proposes a method to obtain body joint angles di-
rectly from an input image of a posture without using skeleton data
from the Kinect SDK. Therefore, the proposed approach could help
accelerate the development of vision based ergonomic assessment sys-
tems via providing necessary information such as joint angles. This
allows training machine learning models directly on high quality and
kinematically modelled joint angles and provide opportunities to in-
corporate and evaluate different sensors and different image modalities
such as RGB color images. The current implementation supports
Microsoft Kinect and ASUS Xtion depth cameras. It can also be extended
to accommodate any depth sensor as described in (Saleh et al., 2017).

We have validated the proposed system using an XSENS mocap
system and an ASUS Xtion depth camera. The validation procedure has
been done via recording mocap data synchronized with RGB and depth
image pairs for 6 subjects of different anthropometric measures. The
recorded mocap data are used to generate the reference joint angles via
an inverse kinematics process in OpenSim software. The reference
RULA scores are then computed based the resulting joint angles and the
default parameters setting discussed in Section 2.5. Thus, in this setting,
the mocap system represents the expert assessment. We achieved a joint
angle MAE error of ± ∘3.19 1. 5 and RMSE error of ± ∘4.27 2.32 and an
average RULA grand score prediction agreement of 89% over both right
and left body sides, with a substantial Kappa index level of 0.71. Fur-
ther, the proposed method demonstrated robustness to self-occlusions
and missing body parts due to cluttered environments as shown in
Fig. 10. We have also qualitatively compared the inferences of the
proposed method with the predictions of the Kinect SDK in challenging
conditions as depicted in Fig. 11. The holistic reasoning approach al-
lowed the proposed method to be more robust to occlusions and clutters
than the Kinect SDK.

4.1. Limitations

There are three main limitations for the current implementation of
the proposed system. First, the used biomechanical model does not

support the neck joint which contributes in evaluating the grand RULA
score. In the used model, the torso, neck and skull are all acting as one
body part with no degrees of freedom between them. This is done for
simplification and faster biomechanics simulation times. The more
degrees of freedom, the more complex is the model which means longer
processing time. Furthermore, due to this complexity, the most recent
full body model published in (Rajagopal et al., 2016) did not have the
neck degrees of freedom. As per our knowledge, there are no full body
models that include degrees of freedom for the head, neck and spine
together available in OpenSim software. However, there are studies that
computed the degrees of freedom at the head, neck (Mortensen et al.,
2018) and spine (Raabe and Chaudhari, 2016) levels separately.
Therefore, we assumed the neck to be in range ∘ ∘[0 , 10 ] with neither
twisting nor bending, and allowed the operator to adjust these settings
through the GUI.

Second, our RULA score computation module assumes a default
setting for parameters that are difficult to be automated such as the
force load and muscle use, as well as the aforementioned neck para-
meters. We have also had to adjust the wrist radial deviation threshold
defined in the literature to be compatible with our modeled ranges.
Further, we also assumed that a shoulder raise occurs when the arms
are above the horizontal which is detected when the shoulder elevation
angle exceeds ∘90 . Thus, the proposed system is semi-automated and
requires manual adjustments if necessary. Future advancements will
focus on researching the development and validation of a more ar-
ticulated skeletal model to overcome the neck limitation.

Third, the frame rate of the system is up to 5 FPS on a NVIDIA
TITAN-X GPU. This high computational cost is mostly attributed to the
person segmentation stage. The need for this stage was due to gen-
erating synthetic depth images without background, due to the diffi-
culty of modeling diverse backgrounds. Hence, our trained models re-
quire removing the background as a preprocessing step. Several
approaches have used calibration methods to build a model of the
background which is then subtracted from the input image (Abobakr
et al., 2018). However, recalibration is required on every change in
scene configuration which makes this approach not practical for real
work conditions with frequently changing scene settings. The instance
segmentation approach we followed in this work overcomes this lim-
itation and offers background independent person segmentation
method with the aforementioned high computational cost. The pro-
posed system will be enhanced via a multi-task model to perform the

Fig. 11. The proposed method in comparison with the
Kinect SDK in existence of occlusions and different view
angles. The green skeleton in the RGB image is obtained
from the Kinect SDK, and the skeletal model represents
our predictions. (Best viewed in color). (For interpreta-
tion of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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segmentation and joint angles prediction tasks simultaneously in a
single forward pass. Further, we will also enlarge the collected dataset
of mocap sequences converted into joint angles and synchronized with
RGB color images to allow training deep learning models for ergo-
nomics evaluation from color cameras.

5. Conclusions

This paper proposed a semi-automated holistic ergonomic posture
assessment system. It is composed of an instance segmentation model
that detects and segments the person in the scene and a deep con-
volutional neural network that we trained to estimate body joint angles
directly from a single depth image. The joint angles prediction model is
trained on synthetic depth images. This allows simulating a wide range
of manual tasks performed by workers of different body shapes and
sizes from several view angles. The corresponding reference joint angles
are generated using a biomechanical model. The proposed system does
not require calibration or specific sensor placement, is marker-free,
supports different depth sensors such as the Kinect and ASUS Xtion and
does not rely on skeleton data. Moreover, it predicts body joint angles
directly from the input image and achieves an average RULA grand
score prediction accuracy of 89%, over both left and right body sides,
with a substantial agreement of 0.71 Kappa index with reference scores.
Thus, this system overcomes challenges inherited from using the Kinect
skeleton data and accelerates developing vision based ergonomic as-
sessment methods using different sensors and different image mod-
alities via providing an approach to obtain necessary postural in-
formation.
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