
User Manual For 2D Cartesian Belt Drive

Author: Tianyu Wang, Jiayin Qu

Johns Hopkins University

Special Thanks to Dr. Kriger and Dr. Vagvolgyi for technical support

1

Catalog

Components 2

Assembly 2

Arduino Demo 10

References 12

2

Components

1. 3 * 57 Stepper Motor
2. 3* Motor Controller
3. 2* Heavy Duty Servo
4. 2* 500 mm belt drive (Forward-backward direction)
5. 1* 3400 mm belt drive (Left-right direction)
6. 1* 2000 mm belt drive (Up-down direction)
7. Arduino Mega 2560 Board
8. Arduino Mega 2560 Extension Board
9. Power Supply for all
10. Wires

Assembly

The overall assembly of the system using the above components are shown below.

Fig 1. Assembly of the whole system.

3

Here we showcase some of the close up assembly and wiring choices.

Fig2. Motor Assembly

4

Fig 3. End-effector Assembly

5

Fig 3. Arduino Board Wiring

6

Note here that motor controller 1, 2,3 is respectively left-right, up-down , and front-back direction
movement motor. However, you can choose to mount them differently as long as they are
connected on PWM supported pins of the arduino. Notice also here that you should connect the
dir+ and pulse+ to 5 V (red) and dir- and pulse - to the signal pin(blue).

For servo connection, you simply align the three pin to the correct alignment of signal, 5V and
ground.

7

Fig 4. Power Supply.

8

Note Here that the power supply may vary depending on your supplier. But the general truth is
that you should take the AC in from the right and connect respectively V+ V- and Ground. Then
on the left, you connect all the corresponding V+ DC out to the V+ of the motor controller and V-
DC to the V- / Ground of the motor controller.

Before we get started with the experiments it would be a good idea to set the current switches to
suit your stepper motor by reading its manual and adjusting setting on the side as shown by the
picture below.

Fig 6. Sample motor controller config from implementation.

Here is index for the different connector

● PUL – This is the Pulse that steps the motor.
● DIR – This is a logic signal to set the motor Direction.
● ENA – This is an Enable signal
● We ignore the ENA (Enable) connections and let module always being enabled.

9

Fig 7. Assembly of Servo

10

Arduino Demo

Now that we have assembled the whole set-up. We can begin to control our robot. Code snippet
shown below showcases what we used for our testing experiment. Note that in this case we did
not connect the servo.

Sample purpose: Draw vertical and horizontal line, then at the starting position draw a rotated
circle.

All the function used are arduino functions and please refer to { Stepper.h } library for
comments and more details.

CODE:

// Include the Arduino Stepper Library
#include <Stepper.h>

// Define Constants

// Number of steps per output rotation
const int STEPS_PER_REV = 800;

// Create Instance of Stepper Class
Stepper stepper_ud(STEPS_PER_REV, 8, 9, 10, 11); // Note here we only care about location
1,3 in this (1,2,3,4) input since 2, 4 are just 5V and it does not matter where we put it
Stepper stepper_lr(STEPS_PER_REV, 12, 3, 13, 4);// ud - up and down (pin 8 dir, 10 puls) ; lr -
left right (pin 12 dir, 13 puls); fb - front back (pin 5 dir, 7 puls)
Stepper stepper_fb(STEPS_PER_REV, 5, 1, 7, 2);
void setup() {
// nothing to do inside the setup

}

void loop() {

stepper_ud.setSpeed(100);// set speed for all motors, input is rpm.
stepper_lr.setSpeed(100);// ex. set left right motor to 100 rpm
stepper_fb.setSpeed(50);

stepper_fb.step(-800); // move forward 800 steps
delay(100);// we like to allow some delay between command to prevent jerking
stepper_lr.step(800); // move right 800 steps
delay(100);

11

stepper_lr.step(-1600);// move left 1600 step
delay(100);
stepper_lr.step(800); // move right 800 steps
delay(1000);
stepper_ud.step(800); // move up 800 steps
delay(100);
stepper_ud.step(-1600); // move down 800 steps
delay(100);
stepper_ud.step(800); // move up 800 steps
delay(1000);

stepper_lr.step(5000); // move right 5000 steps
delay(100);
stepper_lr.step(-5000); // move left 5000 steps
delay(100);
stepper_ud.step(3000); // move up 5000 steps
delay(100);
stepper_ud.step(-3000); // move down 5000 steps
delay(100);

// Draw a square from center
for (int x = 0; x < (STEPS_PER_REV * 3); x++) {
stepper_ud.step(1);
stepper_lr.step(1);

}
delay(100);
for (int x = 0; x < (STEPS_PER_REV * 3); x++) {
stepper_ud.step(1);
stepper_lr.step(-1);

}
delay(100);
for (int x = 0; x < (STEPS_PER_REV * 3); x++) {
stepper_ud.step(-1);
stepper_lr.step(-1);

}
delay(100);
for (int x = 0; x < (STEPS_PER_REV * 3); x++) {
stepper_ud.step(-1);
stepper_lr.step(1);

}
delay(100);
stepper_fb.step(800); // move back 800 steps
delay(10000);

}

12

References

All the code and pictures are from me, therefore no references are needed for this document.

13

