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Purpose
The goal of this project is to provide ROS-integrated computer vision guidance to an automated
mosquito dissection robotic system for live malaria vaccine production. The main tasks of this
research project include:

1. Deep learning-based prediction of mosquito decapitation success
2. Deep learning-based prediction of mosquito salivary gland extraction success
3. ROS-integration of aforementioned deep networks as ROS Service and Client nodes
4. Thorough documentation of all algorithms, usage, and design choices

These prediction tasks will occur in the process flow when the mosquito neck has been aligned with
the actuating blades. The proposed algorithm(s) will either return a predicted successful decapitation
and squeezing, in which case the system will continue as is, or return a predicted failed decapitation
and/or squeezing, in which case the system will instruct the robot to reposition the mosquito.

Background & Relevance
Malaria is a mosquito-borne disease caused by a single-celled organism
of the Plasmodium group that can affect humans. Spread by mosquitoes
carrying the parasite, malaria causes symptoms such as fever, tiredness,
vomiting, headaches, seizures, and even death. There were over 200
million clinical cases of malaria, over 435,000 deaths, and over $12
billion USD loss in Africa in 2017 alone.1 Despite the impact that malaria
has, there currently exists no effective malaria vaccine available in the
market. However, Sanaria, a biotechnology company based in Rockville
MD, has recently been successful in developing a live malaria vaccine
that has shown to be 100% effective in clinical trials. These vaccines are
made from attenuated Plasmodium falciparum sporozoites (PfSPZ), the
most common parasite that causes malaria. Because of the nature of these
live vaccines, they must be cultivated within live mosquitoes, and hence
must also be extracted from mosquito salivary glands, exposed by
decapitating the mosquito by its neck, as shown in figure 1., before being
able to be used as a vaccine.

Currently, the process to create this vaccine is tedious and slow, as it requires manual extraction of the
attenuated PfSPZ from salivary glands using syringes. To scale up production, manual operations that
constrain the production of the vaccine must be replaced by automatic systems. Previous work has
been done by Schrum et al. to create a semi-automatic system for mosquito dissection.2 Though
training time decreased substantially and processing capacity increased by at least two fold, the
process was still manually tedious and labour intensive. Hence, an autonomous robotic system is
currently being developed by LCSR in order to automate the process. The proposed full workflow for
automated PfSPZ extraction is outlined in figure 2. below.
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The green states in the diagram represent manual preprocessing steps. The black states correspond to
completed computer vision tasks, and red states represent incomplete/proposed computer vision tasks.
Yellow states represent implemented hardware/robot actuation steps, and blue states represent
incomplete/proposed hardware/robot actuation steps. Finally, the magenta state represents the step
targeted by this project.

Following the diagram, the mosquitoes are first processed and placed on the rotating wheel, where the
mosquito detection and pose estimation algorithms will be used to locate the mosquito and the
proboscis (the magenta outlined area in figure 1). The robot grabs the mosquito by the proboscis, and
moves it to the staging area, before the cutter. Once the mosquito is moved to the cutter area, the neck
is detected, and the robot aligns the neck with the cutter, ensuring that when decapitation occurs, the
salivary glands are exposed. In tandem with a series of proposed verification steps, salivary glands are
squeezed out of the mosquito, and the turntable cleaned of debris.

From the black states, we can see that previous work has already been done using computer vision to
support and guide the current robotic system for automatic mosquito processing. Image
processing-based methods include mosquito detection, proboscis detection, and neck detection, while
deep learning methods include mosquito orientation classification, mosquito detection, and pose
estimation. Many of these methods are already currently in use, as seen in figure 2., providing support
to automate the system.

Though those methods have been successful in allowing the robotic system to operate autonomously,
comparatively little amounts of effort have been put in with regards to vision-based validation and
error prevention of key steps. That is, most existing methods are responsible for guiding the robot’s
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motion to process mosquitoes but only one method, the confirmation of mosquito movement, has been
developed to facilitate error checking and recovery. All other error checking and validation shown as
red states in the diagram, though proposed to be automated, are currently done manually by the
operator and resolved manually as well.

Two key steps in the processing pipeline are the decapitation step and the squeezing step. Though the
current vision algorithm for proboscis and neck detection work well, the variety in mosquito shapes,
orientation, flexibility, and morphology means that even if keypoints are identified well and the robot
moves through the correct motions, the mosquito may not be placed in the correct location, causing
issues in decapitation and/or squeezing steps. Even through the proposed verification steps, there is
currently no way of resolving these issues if mosquito decapitation or squeezing is ineffective, and the
corresponding mosquito would be best case discarded or worst case create problems in the processing
pipeline. If an algorithm is capable of predicting, based on mosquito positioning and orientation after
the robot has placed the mosquito on the decapitation blades, whether decapitation and/or squeezing
will fail, this presents an opportunity for the robot to reposition the mosquito to a valid position such
that such wastage would not occur.

This prediction algorithm is the goal of this project, and represented by the magenta state in figure 2.
We propose that after the mosquito has been aligned with the actuating blades, that the prediction
algorithm performs a prediction classification task using both overhead images taken from the MMS
camera, and side view images taken by a side view camera facing the decapitation blades. If the
model predicts either a failed decapitation and/or squeezing, the robot will be instructed to reposition
the mosquito such that a successful decapitation and squeezing will be more likely. If the model
predicts a success for both decapitation and squeezing, the process will continue as is. This way, the
number of failed decapitation/squeezes can be minimized, drastically decreasing the potential wastage
of mosquitoes, and preventing blockages/issues in the pipeline that may be a result of decapitation
and/or salivary gland extraction failures.

4



EN.620.801 MSE Robotics Research
Alan Lai, alan_lai@jhu.edu

Final Report

Technical Approach

Deep Learning vs Traditional Image Processing

The reason why deep learning is preferred as a method over image processing with regards to
prediction of decapitation/squeezing success/failure is that there are many failure cases that could
occur, be it mosquito being too far up, too much to the side, too much in front, which all depend on
individual mosquito morphology. It would be impossible to come up with an empirical set of rules for
image processing to enforce, and hence deep learning, which allows for greater flexibility and
robustness with respect to mosquito morphology, is a more promising solution to this problem. The
other advantage of deep learning over image processing is that image processing requires knowledge
of the causes of the problems and a method of modeling those causes in order to recognize and resolve
the issues. As we currently do not know what causes these issues in decapitation or squeezing, deep
learning will be able to allow us to circumvent the need to explicitly model the system.

The other reason as to why we are using deep learning is to be able to leverage the inherent feature
representations in deep networks to be able to learn more about what aspects in mosquito morphology
and/or placement contributes to successful decapitation and squeezing. By using GradCAM or other
class activation map techniques to observe what important features are for the classification task, we
hope to be able to delineate these features to be able to aid robotic system design in order to minimize
the chances of failed decapitations and squeezings. Though this is not one of the goals of the project,
efforts done for this project will facilitate exploration of this analysis.

Deep Learning Based Prediction of Mosquito Decapitation and Salivary Gland Extraction
Success

Top view and side view images (shown above in figure 3.) will be taken after the robot has placed the
mosquito onto the decapitation blades, but before the blades are actuated. If possible, mosquito
images on the turntable prior to robot manipulation may also be taken and incorporated into the
training. After the blades are actuated, the operator will manually determine whether the decapitation
was a success. Then, the mosquitoes will be further processed and salivary glands extraction will be
attempted via squeezing. Once the mosquitoes have been squeezed, the operator will then manually
determine whether the squeezing was a success. The decapitation and/or squeezing success will then
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be written to a file that links these results to the original top and side view images taken of the
mosquitoes prior to decapitation.

These images will then serve as training images for training our neural network. PyTorch will be used
for training, and transfer learning, using PyTorch’s pretrained networks, will be used. This will simply
be a classification problem, predicting classes:

1. Success for both decapitation and squeezing
2. Failure for decapitation
3. Failure for squeezing

Note that more classes may be added in the future that may further delineate differences in how
successful the squeezing step was.

Images will be split 75-25 for training and validation sets, and parameters such as optimizer, learning
rate, batch size, and other potential data augmentation schemes will be attempted in order to both (1)
determine the feasibility of prediction of mosquito processing success (2) create a predictor that
attempts to predict the result of the decapitation and/or squeezing steps. Models will be trained using
the overhead images only, using the side view images only, and using a concatenation of side and
overhead views, as shown in figure 3. After training occurs, an inference pipeline will be created, and
then used for testing with a new test set. Subsequent to testing, a ROS test client and server will be
created in preparation of integration with the larger system.
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Materials & Methods

Deep Learning Datasets
The dataset used in this training consists of 122 image pairs consisting of a top-view image taken by
the overhead MMS camera, and a side view image taken by a blade-facing side view camera, as seen
in figure 3. These images are taken after the mosquito has been aligned with the actuating blades, and
labels of the images consist of three classes:

1. Successful decapitation and successful squeezing (51 total)
2. Successful decapitation and failed squeezing (42 total)
3. Failed decapitation (29 total)

Note that there is no need to further quantify failed decapitation as the squeezing step is not attempted
after a failed decapitation. The images shown in figure 3 are cropped versions of the whole image
captured by the camera, as only information within those regions of interest are useful for our task. In
order to combine the side view and overhead images, the images were concatenated horizontally.
Classification labels for the training images were labeled solely by Wanze Li, who was in charge of
data collection. Labels are initially embedded as part of the file names of the images, but are then
manually entered into a CSV file that serves as an annotation file to all the training images.

Deep Learning Training Pipeline
PyTorch is used as the deep learning framework to train the models, due to my familiarity of using
PyTorch in previous computer vision tasks in development of the mosquito microdissection system.
Transfer learning is also preferred, due to our very limited dataset. Furthermore, previous work done
on orientation classification of mosquitoes has shown that transfer learning results in far superior
classification results as compared to training a model from random initialization. For this initial
training, a standard ResNet18 model is used, due to its smaller capacity suited for our small dataset,
and also because of the ease of implementation and training. Because of the limited number of images
for training, many data augmentation techniques were used to bring more variety into the training
data, including normalization of intensities, random erasing of portions of the images, and random
horizontal flips of the images. As the problem is a classification problem, cross entropy loss is used as
the loss function, and the Adam optimizer with default momentum and learning rate parameters used
for training.

Deep Learning Evaluation
Evaluation of prediction classification was done by computing the number of correct classifications
compared to the total number of images. Furthermore, at each training iteration, the confusion matrix
is also computed, so that further metrics, such as specificity and sensitivity, can also be computed.
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Results & Discussion

Decapitation Prediction
Overall, with the overhead images, a trained ResNet18 model was able to obtain 92% accuracy in
making the correct classification of whether decapitation would be successful or not. The confusion
matrix corresponding to this is shown below in table 1. Side view images on the other hand were not
as effective, reaching only 88% accuracy, while the combined images showed a similar 92% accuracy
performance compared to using the overhead images.

Table 1. Confusion Matrix for Decapitation Prediction with Overhead Images

With 92% accuracy for a prediction classification problem, the algorithm works very well in
predicting whether a decapitation will be successful or not. This will definitely allow the system to be
able to reposition mosquitoes if they are predicted to have unsuccessful decapitations.

To further improve on the accuracy of the model, more data needs to be collected and used for
training. Though it is a simple binary classification problem, because of the nature of deep learning,
122 images is not enough to train a fully robust system. Furthermore, the lack of training samples also
makes evaluation of the models difficult - with only 25 images in the validation set, a
misclassification of a single image results in a 4% change in accuracy. Hence such a small dataset is
unable to fully reflect incremental gains that specific augmentations and parameters may provide. This
may also be what is contributing to the lack of improvement as seen by using both overhead and side
view images in a combined manner. Without more data, it is difficult to find ways to combine the
images in such a way that the network is able to get relevant information from both images to make a
better informed classification decision.

Another area of improvement would be in the models that we use. Currently, all models trained are
ResNet18 models, as their capacity is not too large to allow it to easily overfit to our small dataset. In
the future, with more data, models with higher capacity, such as ResNet152 or other variations, can be
used to see if improvements in accuracy can be obtained. Furthermore, alterations to the standard
models can also be considered. An example is instead of concatenating the overhead and side view
images into a single image for classification, two neural networks can be used for training, where both
overhead and side view images can be trained on their individual models, with their final feature
vectors combined in order to make a classification. This allows each model to specialize in a specific
image, potentially allowing more relevant, image-specific features to be identified and used for
classification.
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Salivary Gland Extraction Prediction
On the other hand, results for salivary gland extraction are not as impressive. With the overhead
images, a trained ResNet18 model was able to obtain only 76% accuracy in making the correct
classification, matched by the combined images, and again with a lower 70% accuracy when using the
side view images. Shown below in table 2 is a sample confusion matrix corresponding to the
validation set used for training the network.

Table 2. Confusion Matrix for Salivary Gland Extraction Prediction with Overhead Images

We can clearly see unimpressive results for this problem, especially considering that random guessing
in a binary classification problem results in a 50% accuracy. We can infer from this that salivary gland
extraction success prediction is a much harder problem, which makes sense given that we are
attempting to predict an outcome several steps downstream in the processing pipeline, where it is
dependent on both the mosquito, hardware components, and software parameters. Furthermore, this
squeezing prediction is hampered even further by the limited dataset problem, since only 93 image
pairs have squeezing labels, as compared to 122 images total. Hence this model faces the same issues
as the decapitation prediction, with difficult training, difficult evaluation, and inability to use higher
capacity models due to the limited dataset size.

Another reason for the poor performance of this prediction is related to the veracity of the labels for
the dataset. Currently, all images are labeled by a single student, which in terms of consistency is
good. However, the student has no experience with actual processing of collected salivary gland
material, and hence bases the success on visual inspection of squeezing results. There may be cases
where the extrudate visually looks good, but may be unusable in terms of vaccine production.
Expertise is needed in order to make accurate judgments about whether the squeezing step is truly a
success or not. Hence in the future, once the squeezing station design has been finalized, images
should be sent to Sanaria/those with processing expertise to judge and label.

Another issue with labeling is label consistency. The labels that we have had so far have been
collected through experiments spanning a period of over two months. Throughout this time, the
squeezing station has undergone many different iterations. As these labels depend on the squeezing
station methodology, label consistency is lost when the squeezing station is changed. For example, a
squeezing failure in an earlier iteration of the squeezing station may be a squeeze success if a later
iteration of the squeezing station is used. Hence the lack of label consistency means that
accurate/good training results for squeezing should not be expected. Related to this, decapitation
results are also highly dependent on implemented CV algorithms. Because parameters of these CV
algorithms may change between testing, there may also be a lack of consistency in terms of image
labels for mosquito decapitation. As the hardware becomes finalized, subsequent training with new
samples will allow more robust and accurate models to be trained.
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Conclusion and Significance

It is clear that work done in this project has demonstrated the feasibility of the use of deep neural
networks to predict both decapitation and salivary gland extraction success. With more and more
varied labeled data collected in the future, more robust and accurate models can easily be trained from
the frameworks set up from this project for use in the final system. With 92% accuracy achieved by
the decapitation success prediction model, model training for that classification task is considered a
success. On the other hand, salivary gland extraction, with 76% accuracy, is somewhat disappointing.
However, the issues with the limited dataset and labels that contribute to this lower number have been
identified in the results and discussion section, and hence future efforts will be aimed at reducing the
impacts of those limitations.

Because of the limitations due to the limited data collection and aforementioned issues with regards to
the label consistency, much effort was diverted away from obtaining good results towards building a
framework that will enable future training to be much more easily done. Both the training framework
and ROS server/client scripts have been set up such that training and operation parameters are
controlled by configuration files that make modification of parameters much easier. Students/team
members who wish to continue efforts done in this project simply need to update parameters in the
relevant configuration files to achieve desired training and ROS integration results.

With the ultimate goal of mass-producing Sanaria’s live malaria vaccine in mind, the progress made in
this project with the vision components of the dissection system represents a large step towards a
fully/semi-automated system. The prediction of downstream process success will definitely enable
more cases of failures to be caught and dealt with before they happen, limiting the number of
mosquitoes wasted and possible blockages to the pipeline. This will surely help streamline the mass
production of the malaria vaccine, enabling us to save millions of lives worldwide.
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Management Summary

Deliverables

● Working algorithm + training framework on mosquito decapitation success prediction
● Working algorithm + training framework on salivary gland extraction success prediction
● ROS integration test client/server for prediction algorithms
● Documentation on all algorithms and usage

All planned deliverables were achieved. Note that the initial goal of analyzing trained networks for
clustering and mosquito morphology analysis for guidance on robot design was made impossible due
to the lack of data; hence that deliverable was removed prior.

Future Work
It goes without saying that with more data in the future, better and more robust models can be trained.
Furthermore, models that are trained in the future can be used to analyze mosquito morphology and/or
position, using GradCAM or other class activation map techniques. This will enable us to interpret
class-determining features that will help guide the design and decisions about physical hardware and
robot control software, hopefully further decreasing the chances of decapitation and salivary gland
extraction failures of occurring.

Lessons Learnt
● Technical skills learnt (deep learning and image processing techniques; ROS integration)
● Importance of data and data augmentation in training deep networks
● Limitations in data can have a large role in driving design choices
● Error handling and error checking are vital for the correct operation of a integrated system
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Technical Appendix

Documentation
Documentation for this project can be found on the following GitLab wiki page.
Please note that only mentors for our project and the team members have access to these Wiki pages.

Source Code
Source code for this project can be found here.
Please note that only mentors for our project and the team members have access to these Git
repositories.
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