Development of a Skull Drilling System

YunChan Chung

ERC/LCSR, Johns Hopkins University
Seoul National University of Science and Technology

July 13, 2011
Overview of Project

- **Development**
 - Registration, Tool-path Planning and Robot Control System

- **For**
 - Skull drilling (trepanning)
 - Surgical robot with force sensor
Background

- Skull
 - 3 layers
 - Critical nature adjacent structures

![Cross-Section of Head and Brain](image)

- Outer hard bone
- Soft bone
- Inner hard bone
- Dura mater

© MedicineNet, Inc.
Background

- Making burr hole
 - Manual drill
 - Automatic-releasing cranial perforators
 - ACRA-CUT: www.acracut.cut
 - EasyDrill: www.micromar.com
 - Robot
 - Image guided control [Kazanzides 2008]
 - Active constraints control [Yen 2010]
Background

- Complications
 - Plunging
 - Mechanical failure \rightarrow geometric error
 - 65.6% of surveyed neurosurgeons experienced [Timothy 2011]
 - Skull fracture
 - Cutting force error
 - Slant holes
 - Limitation of drilling
Approaches

- **Basic idea**
 - Using {geometric + dynamic} information
 - for robot control

- **Registration**
 - Initial registration
 - Fiducial markers
 - Registration revision
 - Fiducial markers
 - Probe points & CT surface

- **Path planning**
 - Geometry = triangular mesh \(\Leftarrow\) CT image data
 - Probing, Cutting, Finishing

- **Robot control**
 - Path + Cutting(or Tactile) Force
 - Cartesian coordinate system
Robot with Force Sensor

- Neuromate
 - 5-axis robot
- JR3
 - 6-DOF force sensor
Overall Procedure

Main Task:
- Initial registration
- Registration revision #1
- Cutting hard/soft bone
- Registration revision #2
- Cutting inner hard bone

Robot Task:
- Guided motion
- Probing
- Cutting
- Probing
- Poke cycle

CT image
- Fiducial pts
- Outer sf
- Inner sf

Outer hard bone
- Inner soft bone
- Inner hard bone
- Dura mater
Registration

- Initial registration
 - Fiducial marker positions of CT & Robot

- Registration revision
 - Accuracy
 - hole axial direction vs. hole position
 - \{ fiducial markers + mesh \}_CT + \{ fiducial markers + probe points \}_robot

probing pattern
Path Planning

- **Type of path for skull drilling**
 - **Probing path**
 - To collect the surface positions
 - **Cutting path**
 - To remove volume rapidly
 - **Poking path**
 - To finish without damage
 - **Reaming path**
 - To make wide opening
Path Planning / Type of Path

- Probing path
- Cutting path
- Poking path
- Reaming path
Path Planning / Offset Surface

- **Cutter offset point**
 - Cutter center point when the cutter is on the surface
 - \(P_c = P_s + r \mathbf{N} \)
 - \(P_s \): cutter contact point of surface
 - \(r \): cutter radius
 - \(\mathbf{N} \): unit surface normal at \(P_s \)

- **Computing an offset point**
 - Intersection (cutter moving direction) & (offset surface)
 - Projection point on offset surfaces along moving direction
 - Take higher one

- **Offset Surface**
 - \(\{ \text{Offset triangle} + \text{Cylinder} + \text{Sphere} \} \)
Path Planning / Probing Path

● Purpose
 ▪ Finding cutter contact point

● Goal position for probe
 ▪ Should penetrate surface
 ▪ \(P_g = P_c + k \cdot D \)
 - \(P_c \) = cutter offset point
 - \(D \) = unit cutter moving direction
 - \(k \) = over shooting size

● Path topology
Path Planning / Cutting Path

- **Purpose**
 - Removing big volume rapidly

- **Path topology**
 - Path file
 - { path layer }
 - { circular path }

- **Computing cutting path**

![Diagram of circular paths on plane, project on top surface, project on bottom surface, blend, and add link and leads.]
Path Planning / Poking Path

- **Purpose**
 - Finish cut
 - Avoid damage to dura mater

- **Goal position for poke**
 - Should penetrate surface

- **Path topology**
Path Planning / Reaming Path

- **Purpose**
 - Reaming out the bottom opening

- **Computing offset point**
 - Projecting points along surface normal direction

- **Tool orientation**
 - Passing apex of cone

- **Path topology**
 - Same with poke path
 - Poke → Move → Cut → Poke →
Robot Control for Skull Drilling

- Type of robot motion for skull drilling
 - Move motion
 - To move rapidly
 - Probe motion
 - To detect contact position
 - Cut motion
 - To cut large volume rapidly
 - Poke motion
 - To avoid damage of dura mater
Robot Control / Position Control

- **Cartesian position control**
 - Linear interpolation of start and end points
 - $P(t) = (1-u)\ P_s + u\ P_e$
 - $u = s / |P_e - P_s|$
 - $s = F(t, v, a)$
 - P_s = start position
 - P_e = end position
 - Inverse kinematics
 - $J(t) = \text{Inverse Kinematics of } P(t)$

- **Problem**
 - P_s and P_e are reachable.
 - But
 - Some of $P(t)$ are not reachable.
Robot Control / Checking Force Limits

<table>
<thead>
<tr>
<th>Control Mode</th>
<th>Force Limit (N)</th>
<th>Torque Limit (N mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force Compliance Mode</td>
<td>40</td>
<td>5000</td>
</tr>
<tr>
<td>Joint Control Mode</td>
<td>4</td>
<td>500</td>
</tr>
<tr>
<td>Cartesian Control Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move</td>
<td>2</td>
<td>500</td>
</tr>
<tr>
<td>Probe</td>
<td>0.5</td>
<td>500</td>
</tr>
<tr>
<td>Cut</td>
<td>20</td>
<td>2500</td>
</tr>
<tr>
<td>Poke</td>
<td>1 ~ 20</td>
<td>2500</td>
</tr>
</tbody>
</table>
Robot Control / Probe Motion Control

- **Purpose**
 - To stop when the probe contact surfaces

- **Checking magnitude of force while moving**
 - Force limit
 - 0.5N
 - Speed
 - 1 mm/sec

- **Computing a contact point**
 - $Ps = Pc - r \frac{F}{|F|}$
 - $Ps =$ real contact point
 - $Pc =$ tool tip center
 - $F =$ reaction force
 - $r =$ cutter radius

- **Collecting a contact point**
 - Write position to a file
Robot Control / Poke Motion Control

- **Purpose**
 - To stop when the force drop suddenly

- **Control strategy (1)**
 - Checking magnitude of force while moving
 - Parameter = lower limit
 - Complications
 - Noise of force sensor
 - Diversity of cutter, bone density, cutting depth

![Graph showing force over time](image)

\[Fa \]
\[Fx \]
\[ts \]
\[tx \]
\[< \text{expectation}> \]
Robot Control / Poke Motion Control

- Control strategy (2)
 - Checking feature of force profile while moving
 - Finding sudden drop
 - Compare the two moving averages
Experiments on Phantom Skull

- Phantom skull with fiducial markers
 - Makers are not original positions with CT data.

- Initial registration
 - # of markers = 10
 - $\text{rms} = 3.7\text{mm}$

- Probing and collecting probe points
 - Maximum feed = $1\ \text{mm/sec}$
 - Acceleration = $2\ \text{mm/sec}$
 - Limit force = $0.5\ \text{N}$
 - # of probe points = 20

- Revised registration
 - Including fiducial markers
 - $\text{rms} = 2.2\text{mm}$
 - Without fiducial markers
 - $\text{rms} = 0.27\text{mm}$
Further Experiments on Cadaver Skull

- Preliminary experiments
 - Finding motion parameters
 - Feed, Acceleration
 - Force profile
 - Force limits

- Main experiments
 - Tool: 3mm diameter
 - Drill: emax
 - Hole: 10mm diameter

- Analysis the results
 - Accuracy of drill hole
 - Damage of dura mater
References

- [Taylor 1992]
- [Lee 2004]
 - Force control and breakthrough detection of a bone-drilling system, IEEE/ASME Transactions on Mechanics, V9, N1
- [Coulson 2008]
 - An autonomous surgical robot for drilling a cochleostomy: preliminary porcine trial, Clinical Otolaryngology, V33
- [Kazanzides 2008]
 - An integrating system for planning, navigation and robotic assistance for skull base surgery, The International Journal of Medical Robotics and Computer Assisted Surgery
- [Yen 2010]
- [Timothy 2011]
 - Don’t take the plunge: avoiding adverse events with cranial perforators, Journal of Neurosurgery
- [Wang 2010]
Thanks

- Dr. Russell Taylor
- Dr. Peter Kazanzides
- Dr. Lulian Lordachita

- Students
 - Zihan Chen
 - Praneeth Sadda
 - Ashish Dua