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Motivations
• Many components of registration/reconstruction 

researches overlap and usually computationally 
intensive. 
– e.g. DRR generation (forward projection), back 

projection, resampling, etc.

• Why don’t we implement those components on 
GPU with an unified interface?

• Matlab-friendliness is important for research
• Shared library, cross-platform, intuitive API, 

modular design, multi-GPU support are 
preferable...

Cited from
NVIDIA CUDA Programming Guide



Purpose

• To develop a cross-platform shared toolkit 
with GPU-acceleration, which helps 
registration/reconstruction researches.

Reg./Recon. Toolkit (shared library)

CUDA

C/C++ MATLAB Python Other languages

Software architecture



Overview of the Toolkit
• One shared library (named “FBProjector.dll”)
• Almost all code in the library are implemented from scratch

– Exceptions
• FDK filtering – collaboration with Dr. Sebastian Schafer
• MI computation on GPU – open source (written by Ramtin Shams)

• Source files and sample code
– https://svn.lcsr.jhu.edu/yotake2/C++/CUDA_Programs/FBProjectorDll

• Dependency
– CUDA Toolkit (http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html)

• Supported platform
– Developed and tested mainly on Windows, but it should work on 

other platform, probably…
– A little more details are on I-STAR wiki

• https://trac.lcsr.jhu.edu/istar/wiki/Projectors

https://svn.lcsr.jhu.edu/yotake2/C++/CUDA_Programs/FBProjectorDll
http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
https://trac.lcsr.jhu.edu/istar/wiki/Projectors


Key components in the Toolkit

• Already implemented on the GPU
– Forward projector (DRR generator)

– Back projector (Voxel-driven & Ray-driven)

– Resampler / Interpolator

– Similarity measure computation (not optimized yet)
• Mutual information (MI), Normalized mutual information (NMI), 

Gradient information (GI), Gradient correlation (GC), Normalized 
cross correlation (NCC), Mean square distance (MSD).

– FDK filtering

• To be implemented… (currently Matlab is used) 
– Optimizer



Application scenarios
(1) 3D/2D Rigid Registration (2) 3D/3D Rigid Registration

(4) Statistical Reconstruction

(5) FDK Reconstruction

Projections 
(2D x N)

(3) 3D/3D Non-Rigid Registration

Resampler / 
Interpolator

Forward 
Projector

Compute
similarity metric / 
objective function

Optimizer
(Update estimate)

Back Projector

Rigid 
transformation

Non-rigid 
transformation 

(deformation field)

Volume

FDK weight & 
filter

(5)

(5)
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(4)
(4)

(4)

(2)

(2),(3)

(1),(2),(3)

(1),(2)

(3)

(1)

(3)

Prior 
(3D) Target 

(3D)

Process that is already 
implemented on GPU

Process that is not 
Implemented on GPU yet

Output of the process

Input data



Application scenarios
2D/3D rigid 
reg.

3D/3D rigid 
reg.

3D/3D non-
rigid reg.

Stat. recon. FDK recon.

Input 2D x N (fixed) 
+ 3D (moving)

3D (fixed) + 
3D (moving)

3D (fixed) + 
3D (moving)

2D x N 2D x N

Optimization 
process

Forward 
project

Resample Apply D
(resample)

Forward 
project

Compute
similarity 
measure

Compute
similarity 
measure

Compute 
gradient

Compute
(curvature?)

FDK
weighting & 
filtering

Back project Back project

Update T Update T Update D Update V

Output T T D V V

N: Number of projection images
T: Rigid transformation
V: Volume (3D)
D: Deformation field



Example MATLAB interface
% Initialize dll instance
dllHandle = FBProjectorDll_wrapper( 'FBProjectorDll' );
dllHandle.CreateFBProjectorInstance(imageSize);
dllHandle.InitializeProjectorParameters(1, ... % intensity window

0,  ... % intensity level
1.0, ... % step size (ignored in siddon mode)
1 )     % 1: siddon mode, 0: trilinear interpolation mode

% set volume data
dllHandle.InitializeInputData_CT( volume );
dllHandle.SetVolumeInfo(volumeSize, voxelSize);

% X-ray projection geometry setting
dllHandle.InitializeProjectionParametersArray(numProj);
for i=1:100

projectionGeometry = struct('DetectorFrame', DetectorFrame(:,:,i) , ...
'SourcePosition', SourcePosition(:,i), …
'IsPerspective', 1, 'FOV', fov); 

dllHandle.SetProjectionParameter_objectOriented(i-1, projectionGeometry);
end

% Compute DRR
dllHandle.ForwardProjection( imageBufferPtr );
DRRs = reshape( get(imageBuffer.Data, 'value'), [imageSize numProj] ) ;

Initialization

Volume data 
setting

Geometry 
setting

DRR 
generation



Pixel/voxel order used in the library

For projection (2D) For volume (3D)

1st dimension (X)

2nd dimension 
(Y)

3rd dimension (Z)

(In slice)
Top-left origin, row-major

Bottom-left origin, 
row-major

2nd dimension
(v)

1st dimension 
(u)1st pixel

1st voxel

Origin
(center of the FOV)

Origin
(center of the volume)



Example C/C++ interface
// Initialize dll instance
FBProjectorInstance fbProjector;
CreateFBProjectorInstance(&fbProjector, WIDTH, HEIGHT, false, err_str);
SetWindowLevel(fbProjector, WINDOW, LEVEL, err_str);
SetStepSize(fbProjector, 1.0, err_str);
SetIsSiddon(fbProjector, true, err_str);

// set volume data
float *volume; // see the previous slide for the voxel order
InitializeInputData_CT(fbProjector, volume, w, h, d, 1, err_str);
SetVolumeInfo(fbProjector, w, h, d, vox_w, vox_h, vox_d, err_str);

// X-ray projection geometry setting
InitializeProjectionParametersArray(fbProjector, NUM_PROJECTION, err_str);
ProjectionParameters_cameraOriented projectionGeometry;
for(int i=0;i<NUM_PROJECTION;i++){

// Geometry setting on projectionGeometry
SetProjectionParameter_cameraOriented(fbProjector, i, projectionGeometry, err_str);

}

// Compute DRR
PackedDynamicFloatMatrix DRRs;
InitializePackedDynamicFloatMatrix(&DRRs);

ForwardProjection(fbProjector, &DRRs, err_str);

Initialization

Volume data 
setting

Geometry 
setting

DRR 
generation



Performance example

456×263×494 (1.0mm3)

Hardware specifications

1024×1024×360

12.17 sec (~30fps)
(1.0mm step length, non-Siddon mode)

Operating System Windows Vista 64 bit

Processor type Intel® Core™ 2 Duo

CPU clock frequency (GHz) 2.66

Graphics card type NVIDIA® Quadro® FX3700M

No. processors core 128

Memory bandwidth (GB/s) 51.2

Graphics memory (MB) 1024 Demo



Definition of the coordinate systems



Example application (1):
DRR generation as an image-guidance tool

• Functions used
– Forward projector

• Integrated into Slicer 3

• Real-time (~30fps)

Tracker-on-C

Microntracker
mounted on the C-arm
(video based tracker)

Video image captured by Microntracker

DRR



Example application (2):
Intensity-based 2D/3D rigid registration

• Functions used
– Forward projector, similarity 

measure computation

• Function other than the toolkit
– Optimizer (in Matlab): downhill 

simplex

Fixed 
image 
with 
edges 
of the 
floating 
image

Floating 
image



Example application (3):
Intensity-based 3D/3D rigid registration

• Functions used
– Resampler, similarity measure computation (MI)

• Function other than the toolkit
– Optimizer (in Matlab): downhill simplex

Fixed volume
Floating volume

Axial slices Coronal slices Sagittal slices



Example application (4):
FDK reconstruction

• Functions used
– FDK filtering, voxel-driven back 

projector

• Integrated into istar3D (cone-beam 
reconstruction platform developed 
in I-STAR lab)

Performance example
Input: 768x768, 360 projections
Output: 512x512x512 volume
GPU: nVidia Quadro FX3700
About 62 seconds

Input X-ray projections (Log corrected) Output volume

femur



Example application (5):
Statistical reconstruction

• Functions used

– Siddon-based forward projector, ray-driven back projector

• Integrated into Matlab software (written by Dr. Stayman)

An example of sparse sample (6 samples) reconstruction

Input projection images (6 images) Reconstructed volume



Current status

• Implementation of the basic functions has 
been completed and almost ready for 
“version 1.0” release.

• Some code are not clean and need to 
reorganize to make things consistent. 

• Need to organize test datasets (ground 
truth reconstruction) to check the 
functionalities.



Future works
• Unit test & debug

• Multi-GPU support

– partly supported in the current version

• Re-organize (clean up) API

• New functions/applications

– Polyenergetic projector (‘segmented volume’ projector)

– Depth map computation for video/CT registration

– Statistical atlas using voxel-based statistics with GPU-
acceleration (fast instance generation, 2D/3D reg., etc.)

– Connect the ‘real-time’ X-ray imaging with robot (da Vinci, 
ROBODOC)?

– etc. (any suggestions are very welcomed.)



Additional features of the toolkit

• Surface Projector
– Generate projection images of surface (polygonal 

mesh) model using VTK

– Generate multiple images at the same time

– Can be used from MATLAB, C/C++, etc. along with 
DRR generator

X-ray image DRR Surface model projection 
(rendering)

Polygon mesh modelCT volume data



Implementation and experimental 
validation of an intensity-based rigid 

2D/3D registration



Intensity-based rigid 2D/3D registration: 
work flow

CT volume

translation & 
rotation

DRR generation

Similarity 
measurement

Result

Optimization

Calibrated X-ray images
(Prior calibration or 

fiducial-based estimation)

C-arm
Detector

Separation 
angle

Fixed images
Floating images

Preprocessing
(Log correction)

Preprocessing
(HU -> attenuation)

(1)

(2)

(1)

(2)

(1)

(2)

DRR

X-ray images 
(Log corrected)

Processed on the GPU

CT volume



Three Datasets for evaluation

1. Sawbone

– Flat-panel

– without soft tissues

2. Cadaver #1

– Flat-panel C-arm

– with soft tissues

3. Cadaver #2

– Image intensifier

– with soft tissues
Fixed images (Log corrected) Floating images

CT volume

translation & 
rotation

DRR generation

Similarity 
measurement

Result

Optimization

Calibrated X-ray images
(Prior calibration or fiducial-

based estimation)

Fixed images
Floating images

Preprocessing
(Log correction)

Preprocessing
(HU -> attenuation)



Dataset 1: Sawbone phantom
• Preop CT

– Diagnostic CT at Bayview
Medical Center (2009/3/3)

– 256x256x256 voxel (cropped)

– 0.564x0.564x0.6 mm/voxel

– 135 kVp, 250 mAs

• Intraop X-ray
– C14 at MISTIC (2010/3/8)

– 768x768 pixel

– 0.388x0.388 mm/pixel

– 100 kVp, 5.8 mA



Dataset 2: Cadaver #1
• Preop CT

– Diagnostic CT at Bayview
Medical Center (2010/4/29)

– 256x256x256 voxel (cropped)
– 0.782x0.782x2 mm/voxel
– 135 kVp, 250 mAs

• Intraop X-ray
– C14 at MISTIC (2010/4/30)
– 768x768 pixel
– 0.388x0.388 mm/pixel
– 120 kVp, 5.2 mA
– After cement injection



Dataset 3: Cadaver #2
• Preop CT

– Diagnostic CT at Bayview Medical 
Center (2009/8/7)

– 300x300x700 voxel (cropped)
– 0.835x0.835x0.602 mm/voxel
– 135 kVp, 250 mAs
– Gaussian filter to reduce streak 

artifact

• Intraop X-ray
– Philips at Bayview (2009/8/10)
– 480x480 pixel
– 0.45x0.45 mm/pixel
– Before cement injection
– With distortion correction
– Only 7 images with narrow 

separation angle
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DRR generation

CT volume

translation & 
rotation

DRR generation

Similarity 
measurement

Result

Optimization

Calibrated X-ray images
(Prior calibration or fiducial-

based estimation)

Fixed images
Floating images

Preprocessing
(Log correction)

Preprocessing
(HU -> attenuation)

step length

Image plane

Volume data

Eye 
position

Volume data
ray direction

Tri-linear interpolation 
ray-tracing algorithm

step length

Tri-linear 
interpolation

Siddon’s ray-casting 
algorithm

intersection 
length

512×512×512 volume (0.3mm3/voxel)

Siddon RL. , "Fast calculation 
of the exact radiological path 
for a three-dimensional CT 
array," Med.Phys. Mar-Apr 
12(2), 252-255 (1985)

256x256 62.44

512x512 127.14

768x768 253.01

1024x1024 426.62

Siddon (ms)
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S
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CT volume

translation & 
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DRR generation

Similarity 
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Result
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Optimizer
1. Nelder-Mead Downhill Simplex

– Heuristic optimization algorithm

– No derivative computation

– Matlab implementation - fminsearch()

2. CMA-ES (Covariance Matrix Adaptation 
Evolution Strategy)
– No derivative computation

– Known for rubostness and efficiency in a rugged 
search landscape

– Matlab implementation by Hansen*1

CT volume

translation & 
rotation

DRR generation

Similarity 
measurement

Result

Optimization

Calibrated X-ray images
(Prior calibration or fiducial-

based estimation)

Fixed images
Floating images

Preprocessing
(Log correction)

Preprocessing
(HU -> attenuation)

from Wikipedia

*1: Hansen N. The CMA evolution 
strategy: a comparing review. In: 
Lozano JA, Larranaga P, Inza I, 
Bengoetxea E, editors. Towards a new 
evolutionary computation. Advances 
on estimation of distribution 
algorithms: Springer; 2006. p. 75-102.



Coarse-to-fine multi-resolution 
optimization strategy

768×768

384×384

192×192

96×96

CT volume

translation & 
rotation

DRR generation

Similarity 
measurement

Result

Optimization

Calibrated X-ray images
(Prior calibration or fiducial-

based estimation)

Fixed images
Floating images

Preprocessing
(Log correction)

Preprocessing
(HU -> attenuation)

• Optimization was repeated 4 times using different resolution



Ground truth registration

1. Flat-panel C-arm (Siemens C14)

– Geometric calibration using helix BB phantom

– 3D/3D registration between Preop CT and CBCT

2. Conventional C-arm

– Pose estimation using FTRAC

– Diagnostic CT of the cadaver with the FTRAC

CBCT

PreopCT

3D/3D 
registration



Evaluation method: Error measure

• mTRE (mean TRE)

– An error measure proposed in 
[1] to determine 3D error of a 
registration.

– While it is widely used in 
literature, definition of the 
“target” points differ from 
study to study

[1] van de Kraats EB, Penney GP, Tomazevic
D, van Walsum T, Niessen WJ. , 
"Standardized evaluation methodology for 
2-D-3-D registration," IEEE 
Trans.Med.Imaging Sep 24(9), 1177-1189 
(2005).





k

i

igoldireg pTpT
k

mTRE
1

1

Ground truth Estimated

“Target” points

50mm3 cube 
centered at 
the femoral 
head center

“Target” 
points

Points on the 
grid with 1mm 
interval: 
50×50×50 = 
125000 points



Evaluation method: Initial guesses
• 50 registration trials from different initial pose were 

conducted
• Initial poses were randomly selected by perturbing the 

ground truth registration by [-10 +10] mm, [-10 +10] 
degrees.

• The same initial poses were used for all experiments

Randomly generated initial guess (2 examples out of 50)

Fixed image Floating image

Edge of the 
floating image



Results



One typical trial

• GI similarity 
measure

• CMA-ES 
optimizer

• Siddon-based 
DRR



Result of 50 trials: comparison of 
number of images

y

xz
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1.013
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± 3.5
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159.3 ±

3.8
0 n/a *

104.3 ±

8.0
0 n/a

2
0.229 ±

0.042
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± 5.6
100 90

1.404 ±
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92 58.5

3.241 ±
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90 47.3 n/a n/a n/a n/a
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100 45 ---- ---- -- 31.5 n/a n/a n/a n/a

Sawbone Cadaver #1 T - registration time, R - success rate, D - angle between consecutive images used in the experimentCadaver #2

Plot for Cadaver #1 
experiment



Similarity Measures: Sawbone Images
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Similarity Measures: Cadaver #1 (flat-panel)
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Similarity Measures: Cadaver #2
(image intensifier)
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Result of 50 trials: comparison of 
similarity measures

• All similarity measures showed almost the same performance in 
Sawbone images.

• GI worked significantly better than MI and NMI in cadaver images
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Comparison of DRR generator

• Step length didn’t affect 
registration result in Sawbone
and Cadaver #2

• In Cadaver #1, increasing step 
length increased final mTRE

Volume data
ray direction

step length

Tri-linear 
interpolation

intersection 
length

SiddonTri-linear 
interpolation



Comparison of Optimization Strategy (coarse-to-
fine multi-resolution optimization)

• The effect of coarse-to-fine multi-resolution strategy was statistically 
significant in Sawbone (P<0.001) and Cadaver 1 (P=0.026)

• No significant difference was found in Cadaver2 (because of the 
resolution of the original images?)
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Comparison of Optimizer

• In Cadaver #1 images, CMA-ES showed better precision 
than Downhill Simplex.

• Other two experiments showed no difference
(To be confirmed by a statistical analysis)
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Summary

• In 3 experiments, mean TRE was 0.229 ± 0.042mm, 
1.404 ± 0.967mm, 3.241 ± 0.756mm, respectively.

• GI worked significantly better than MI and NMI in 
presence of soft tissues.

• Coarse-to-fine multi-resolution strategy was 
significantly effective

• Registration accuracy may depend on the target 
anatomy, image quality as well as the geometries 
(separation angles) of each image.



Next step

• Integration with navigation systems

– Bone augmentation navigation system, TREK, etc.

• Further cadaver studies

• Integration with reconstruction algorithms 
that require registered prior CT

– SxMAC, ROI recon, Hybrid recon, etc.


