
GPU-accelerated
Registration/Reconstruction Toolkit and

its Application to 2D/3D registration

Yoshito Otake

Seminar on Statistical Anatomic Models,
Registration, and Reconstruction

2011/1/27

Acknowledgements

• Ehsan Basafa
• Blake Lucas
• Wen Liu
• Ben X. Kang

I-STAR lab
• J. Web Stayman
• Wojtek Zbijewski
• Sebastian Schafer
• Junghoon Lee

• Ali Uneri
• Sureerat Reaungamornrat
• Sajendra Nithiananthan
• Daniel Mirota

JHU/CISST
• Robert Armiger
• Michael D. Kutzer
• Ryan Murphy

APL

Advisers
• Russell H. Taylor
• Mehran Armand

• Peter Kazanzides
• Jeffrey H. Siewerdsen

Collaborators

• Simon C Mears
• Stephen Belkoff

Bayview

Outline

1. Development of the GPU reg./recon. toolkit

– Motivation

– Purpose

– Implementation detail

– Example applications

– Future work

2. An application of the toolkit: Intensity-based
rigid 2D/3D registration

– Implementation and experimental evaluation

Motivations
• Many components of registration/reconstruction

researches overlap and usually computationally
intensive.
– e.g. DRR generation (forward projection), back

projection, resampling, etc.

• Why don’t we implement those components on
GPU with an unified interface?

• Matlab-friendliness is important for research
• Shared library, cross-platform, intuitive API,

modular design, multi-GPU support are
preferable...

Cited from
NVIDIA CUDA Programming Guide

Purpose

• To develop a cross-platform shared toolkit
with GPU-acceleration, which helps
registration/reconstruction researches.

Reg./Recon. Toolkit (shared library)

CUDA

C/C++ MATLAB Python Other languages

Software architecture

Overview of the Toolkit
• One shared library (named “FBProjector.dll”)
• Almost all code in the library are implemented from scratch

– Exceptions
• FDK filtering – collaboration with Dr. Sebastian Schafer
• MI computation on GPU – open source (written by Ramtin Shams)

• Source files and sample code
– https://svn.lcsr.jhu.edu/yotake2/C++/CUDA_Programs/FBProjectorDll

• Dependency
– CUDA Toolkit (http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html)

• Supported platform
– Developed and tested mainly on Windows, but it should work on

other platform, probably…
– A little more details are on I-STAR wiki

• https://trac.lcsr.jhu.edu/istar/wiki/Projectors

https://svn.lcsr.jhu.edu/yotake2/C++/CUDA_Programs/FBProjectorDll
http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
https://trac.lcsr.jhu.edu/istar/wiki/Projectors

Key components in the Toolkit

• Already implemented on the GPU
– Forward projector (DRR generator)

– Back projector (Voxel-driven & Ray-driven)

– Resampler / Interpolator

– Similarity measure computation (not optimized yet)
• Mutual information (MI), Normalized mutual information (NMI),

Gradient information (GI), Gradient correlation (GC), Normalized
cross correlation (NCC), Mean square distance (MSD).

– FDK filtering

• To be implemented… (currently Matlab is used)
– Optimizer

Application scenarios
(1) 3D/2D Rigid Registration (2) 3D/3D Rigid Registration

(4) Statistical Reconstruction

(5) FDK Reconstruction

Projections
(2D x N)

(3) 3D/3D Non-Rigid Registration

Resampler /
Interpolator

Forward
Projector

Compute
similarity metric /
objective function

Optimizer
(Update estimate)

Back Projector

Rigid
transformation

Non-rigid
transformation

(deformation field)

Volume

FDK weight &
filter

(5)

(5)

(1),(4)

(4)

(4)
(4)

(4)

(2)

(2),(3)

(1),(2),(3)

(1),(2)

(3)

(1)

(3)

Prior
(3D) Target

(3D)

Process that is already
implemented on GPU

Process that is not
Implemented on GPU yet

Output of the process

Input data

Application scenarios
2D/3D rigid
reg.

3D/3D rigid
reg.

3D/3D non-
rigid reg.

Stat. recon. FDK recon.

Input 2D x N (fixed)
+ 3D (moving)

3D (fixed) +
3D (moving)

3D (fixed) +
3D (moving)

2D x N 2D x N

Optimization
process

Forward
project

Resample Apply D
(resample)

Forward
project

Compute
similarity
measure

Compute
similarity
measure

Compute
gradient

Compute
(curvature?)

FDK
weighting &
filtering

Back project Back project

Update T Update T Update D Update V

Output T T D V V

N: Number of projection images
T: Rigid transformation
V: Volume (3D)
D: Deformation field

Example MATLAB interface
% Initialize dll instance
dllHandle = FBProjectorDll_wrapper('FBProjectorDll');
dllHandle.CreateFBProjectorInstance(imageSize);
dllHandle.InitializeProjectorParameters(1, ... % intensity window

0, ... % intensity level
1.0, ... % step size (ignored in siddon mode)
1) % 1: siddon mode, 0: trilinear interpolation mode

% set volume data
dllHandle.InitializeInputData_CT(volume);
dllHandle.SetVolumeInfo(volumeSize, voxelSize);

% X-ray projection geometry setting
dllHandle.InitializeProjectionParametersArray(numProj);
for i=1:100

projectionGeometry = struct('DetectorFrame', DetectorFrame(:,:,i) , ...
'SourcePosition', SourcePosition(:,i), …
'IsPerspective', 1, 'FOV', fov);

dllHandle.SetProjectionParameter_objectOriented(i-1, projectionGeometry);
end

% Compute DRR
dllHandle.ForwardProjection(imageBufferPtr);
DRRs = reshape(get(imageBuffer.Data, 'value'), [imageSize numProj]) ;

Initialization

Volume data
setting

Geometry
setting

DRR
generation

Pixel/voxel order used in the library

For projection (2D) For volume (3D)

1st dimension (X)

2nd dimension
(Y)

3rd dimension (Z)

(In slice)
Top-left origin, row-major

Bottom-left origin,
row-major

2nd dimension
(v)

1st dimension
(u)1st pixel

1st voxel

Origin
(center of the FOV)

Origin
(center of the volume)

Example C/C++ interface
// Initialize dll instance
FBProjectorInstance fbProjector;
CreateFBProjectorInstance(&fbProjector, WIDTH, HEIGHT, false, err_str);
SetWindowLevel(fbProjector, WINDOW, LEVEL, err_str);
SetStepSize(fbProjector, 1.0, err_str);
SetIsSiddon(fbProjector, true, err_str);

// set volume data
float *volume; // see the previous slide for the voxel order
InitializeInputData_CT(fbProjector, volume, w, h, d, 1, err_str);
SetVolumeInfo(fbProjector, w, h, d, vox_w, vox_h, vox_d, err_str);

// X-ray projection geometry setting
InitializeProjectionParametersArray(fbProjector, NUM_PROJECTION, err_str);
ProjectionParameters_cameraOriented projectionGeometry;
for(int i=0;i<NUM_PROJECTION;i++){

// Geometry setting on projectionGeometry
SetProjectionParameter_cameraOriented(fbProjector, i, projectionGeometry, err_str);

}

// Compute DRR
PackedDynamicFloatMatrix DRRs;
InitializePackedDynamicFloatMatrix(&DRRs);

ForwardProjection(fbProjector, &DRRs, err_str);

Initialization

Volume data
setting

Geometry
setting

DRR
generation

Performance example

456×263×494 (1.0mm3)

Hardware specifications

1024×1024×360

12.17 sec (~30fps)
(1.0mm step length, non-Siddon mode)

Operating System Windows Vista 64 bit

Processor type Intel® Core™ 2 Duo

CPU clock frequency (GHz) 2.66

Graphics card type NVIDIA® Quadro® FX3700M

No. processors core 128

Memory bandwidth (GB/s) 51.2

Graphics memory (MB) 1024 Demo

Definition of the coordinate systems

Example application (1):
DRR generation as an image-guidance tool

• Functions used
– Forward projector

• Integrated into Slicer 3

• Real-time (~30fps)

Tracker-on-C

Microntracker
mounted on the C-arm
(video based tracker)

Video image captured by Microntracker

DRR

Example application (2):
Intensity-based 2D/3D rigid registration

• Functions used
– Forward projector, similarity

measure computation

• Function other than the toolkit
– Optimizer (in Matlab): downhill

simplex

Fixed
image
with
edges
of the
floating
image

Floating
image

Example application (3):
Intensity-based 3D/3D rigid registration

• Functions used
– Resampler, similarity measure computation (MI)

• Function other than the toolkit
– Optimizer (in Matlab): downhill simplex

Fixed volume
Floating volume

Axial slices Coronal slices Sagittal slices

Example application (4):
FDK reconstruction

• Functions used
– FDK filtering, voxel-driven back

projector

• Integrated into istar3D (cone-beam
reconstruction platform developed
in I-STAR lab)

Performance example
Input: 768x768, 360 projections
Output: 512x512x512 volume
GPU: nVidia Quadro FX3700
About 62 seconds

Input X-ray projections (Log corrected) Output volume

femur

Example application (5):
Statistical reconstruction

• Functions used

– Siddon-based forward projector, ray-driven back projector

• Integrated into Matlab software (written by Dr. Stayman)

An example of sparse sample (6 samples) reconstruction

Input projection images (6 images) Reconstructed volume

Current status

• Implementation of the basic functions has
been completed and almost ready for
“version 1.0” release.

• Some code are not clean and need to
reorganize to make things consistent.

• Need to organize test datasets (ground
truth reconstruction) to check the
functionalities.

Future works
• Unit test & debug

• Multi-GPU support

– partly supported in the current version

• Re-organize (clean up) API

• New functions/applications

– Polyenergetic projector (‘segmented volume’ projector)

– Depth map computation for video/CT registration

– Statistical atlas using voxel-based statistics with GPU-
acceleration (fast instance generation, 2D/3D reg., etc.)

– Connect the ‘real-time’ X-ray imaging with robot (da Vinci,
ROBODOC)?

– etc. (any suggestions are very welcomed.)

Additional features of the toolkit

• Surface Projector
– Generate projection images of surface (polygonal

mesh) model using VTK

– Generate multiple images at the same time

– Can be used from MATLAB, C/C++, etc. along with
DRR generator

X-ray image DRR Surface model projection
(rendering)

Polygon mesh modelCT volume data

Implementation and experimental
validation of an intensity-based rigid

2D/3D registration

Intensity-based rigid 2D/3D registration:
work flow

CT volume

translation &
rotation

DRR generation

Similarity
measurement

Result

Optimization

Calibrated X-ray images
(Prior calibration or

fiducial-based estimation)

C-arm
Detector

Separation
angle

Fixed images
Floating images

Preprocessing
(Log correction)

Preprocessing
(HU -> attenuation)

(1)

(2)

(1)

(2)

(1)

(2)

DRR

X-ray images
(Log corrected)

Processed on the GPU

CT volume

Three Datasets for evaluation

1. Sawbone

– Flat-panel

– without soft tissues

2. Cadaver #1

– Flat-panel C-arm

– with soft tissues

3. Cadaver #2

– Image intensifier

– with soft tissues
Fixed images (Log corrected) Floating images

CT volume

translation &
rotation

DRR generation

Similarity
measurement

Result

Optimization

Calibrated X-ray images
(Prior calibration or fiducial-

based estimation)

Fixed images
Floating images

Preprocessing
(Log correction)

Preprocessing
(HU -> attenuation)

Dataset 1: Sawbone phantom
• Preop CT

– Diagnostic CT at Bayview
Medical Center (2009/3/3)

– 256x256x256 voxel (cropped)

– 0.564x0.564x0.6 mm/voxel

– 135 kVp, 250 mAs

• Intraop X-ray
– C14 at MISTIC (2010/3/8)

– 768x768 pixel

– 0.388x0.388 mm/pixel

– 100 kVp, 5.8 mA

Dataset 2: Cadaver #1
• Preop CT

– Diagnostic CT at Bayview
Medical Center (2010/4/29)

– 256x256x256 voxel (cropped)
– 0.782x0.782x2 mm/voxel
– 135 kVp, 250 mAs

• Intraop X-ray
– C14 at MISTIC (2010/4/30)
– 768x768 pixel
– 0.388x0.388 mm/pixel
– 120 kVp, 5.2 mA
– After cement injection

Dataset 3: Cadaver #2
• Preop CT

– Diagnostic CT at Bayview Medical
Center (2009/8/7)

– 300x300x700 voxel (cropped)
– 0.835x0.835x0.602 mm/voxel
– 135 kVp, 250 mAs
– Gaussian filter to reduce streak

artifact

• Intraop X-ray
– Philips at Bayview (2009/8/10)
– 480x480 pixel
– 0.45x0.45 mm/pixel
– Before cement injection
– With distortion correction
– Only 7 images with narrow

separation angle

 




 

d

d dsEsII
0

0 ;exp   










d
d

d dsEs
I

I
g

0
0

;ln 

X-ray
projections

(120kVp,
5.2mA)

Prior CT
(135kVP,
250mAs)

water

waterHU


 
1000 

 
d

dsEsDRR
0

;

Preprocessing of input images
CT volume

translation &
rotation

DRR generation

Similarity
measurement

Result

Optimization

Calibrated X-ray images
(Prior calibration or fiducial-

based estimation)

Fixed images
Floating images

Preprocessing
(Log correction)

Preprocessing
(HU -> attenuation)

DRR generation

CT volume

translation &
rotation

DRR generation

Similarity
measurement

Result

Optimization

Calibrated X-ray images
(Prior calibration or fiducial-

based estimation)

Fixed images
Floating images

Preprocessing
(Log correction)

Preprocessing
(HU -> attenuation)

step length

Image plane

Volume data

Eye
position

Volume data
ray direction

Tri-linear interpolation
ray-tracing algorithm

step length

Tri-linear
interpolation

Siddon’s ray-casting
algorithm

intersection
length

512×512×512 volume (0.3mm3/voxel)

Siddon RL. , "Fast calculation
of the exact radiological path
for a three-dimensional CT
array," Med.Phys. Mar-Apr
12(2), 252-255 (1985)

256x256 62.44

512x512 127.14

768x768 253.01

1024x1024 426.62

Siddon (ms)

 
 

2

12cos
,

, 


ji
jiw



   
   jipjip

jipjip
ji

,,

,,
arccos

21

21
,






(cos(2)+1)/2

(angle between two gradient vectors)

cos()

0 2p

p

1

-1

0

1





 jip ,1  jip ,2

         
ji

jipjipjiwppG
,

2121 ,,,min,,



Pluim, J.P., Maintz, J.B. and Viergever, M.A., 2000. Image
registration by maximization of combined mutual information
and gradient information. IEEE Transactions on Medical
Imaging, 19(8), 809-814.

Gradient
vector

CT volume

translation &
rotation

DRR generation

Similarity
measurement

Result

Optimization

Calibrated X-ray images
(Prior calibration or fiducial-

based estimation)

Fixed images
Floating images

Preprocessing
(Log correction)

Preprocessing
(HU -> attenuation)Gradient Information (GI)

Similarity Measure

p1 p2

|p1| |p2| wHmin (|p2|,|p2|)

GI(p1,p2)

S

Gradient Information (GI)
Similarity Measure

CT volume

translation &
rotation

DRR generation

Similarity
measurement

Result

Optimization

Calibrated X-ray images
(Prior calibration or fiducial-

based estimation)

Fixed images
Floating images

Preprocessing
(Log correction)

Preprocessing
(HU -> attenuation)

Optimizer
1. Nelder-Mead Downhill Simplex

– Heuristic optimization algorithm

– No derivative computation

– Matlab implementation - fminsearch()

2. CMA-ES (Covariance Matrix Adaptation
Evolution Strategy)
– No derivative computation

– Known for rubostness and efficiency in a rugged
search landscape

– Matlab implementation by Hansen*1

CT volume

translation &
rotation

DRR generation

Similarity
measurement

Result

Optimization

Calibrated X-ray images
(Prior calibration or fiducial-

based estimation)

Fixed images
Floating images

Preprocessing
(Log correction)

Preprocessing
(HU -> attenuation)

from Wikipedia

*1: Hansen N. The CMA evolution
strategy: a comparing review. In:
Lozano JA, Larranaga P, Inza I,
Bengoetxea E, editors. Towards a new
evolutionary computation. Advances
on estimation of distribution
algorithms: Springer; 2006. p. 75-102.

Coarse-to-fine multi-resolution
optimization strategy

768×768

384×384

192×192

96×96

CT volume

translation &
rotation

DRR generation

Similarity
measurement

Result

Optimization

Calibrated X-ray images
(Prior calibration or fiducial-

based estimation)

Fixed images
Floating images

Preprocessing
(Log correction)

Preprocessing
(HU -> attenuation)

• Optimization was repeated 4 times using different resolution

Ground truth registration

1. Flat-panel C-arm (Siemens C14)

– Geometric calibration using helix BB phantom

– 3D/3D registration between Preop CT and CBCT

2. Conventional C-arm

– Pose estimation using FTRAC

– Diagnostic CT of the cadaver with the FTRAC

CBCT

PreopCT

3D/3D
registration

Evaluation method: Error measure

• mTRE (mean TRE)

– An error measure proposed in
[1] to determine 3D error of a
registration.

– While it is widely used in
literature, definition of the
“target” points differ from
study to study

[1] van de Kraats EB, Penney GP, Tomazevic
D, van Walsum T, Niessen WJ. ,
"Standardized evaluation methodology for
2-D-3-D registration," IEEE
Trans.Med.Imaging Sep 24(9), 1177-1189
(2005).





k

i

igoldireg pTpT
k

mTRE
1

1

Ground truth Estimated

“Target” points

50mm3 cube
centered at
the femoral
head center

“Target”
points

Points on the
grid with 1mm
interval:
50×50×50 =
125000 points

Evaluation method: Initial guesses
• 50 registration trials from different initial pose were

conducted
• Initial poses were randomly selected by perturbing the

ground truth registration by [-10 +10] mm, [-10 +10]
degrees.

• The same initial poses were used for all experiments

Randomly generated initial guess (2 examples out of 50)

Fixed image Floating image

Edge of the
floating image

Results

One typical trial

• GI similarity
measure

• CMA-ES
optimizer

• Siddon-based
DRR

Result of 50 trials: comparison of
number of images

y

xz

(1) (2)
Fixed

images

Floating
images

0

10

20

30

40

50

60

70

80

90

1 2 3 4 1 2 3 4 1 2

fi
n

a
l
m

T
R

E
(m

m
)

Number

of fixed

images

Sawbone Cadaver #1 Cadaver #2

mTRE

(mm)

for

success

T (s)
R

(%)
D (deg)

mTRE

(mm)

for

success

T (s)
R

(%)
D (deg)

mTRE

(mm)

for

success

T (s)
R

(%)

D

(de

g)

1
1.560±

1.013

142.8

± 3.5
94 n/a *

159.3 ±

3.8
0 n/a *

104.3 ±

8.0
0 n/a

2
0.229 ±

0.042

280.1

± 5.6
100 90

1.404 ±

0.967

323.5 ±

5.7
92 58.5

3.241 ±

0.756

184.5 ±

6.1
68

31.

5

3
0.325 ±

0.027

410.6

± 16.1
100 60

1.021 ±

0.682

450.5 ±

5.4
90 47.3 n/a n/a n/a n/a

4
0.314 ±

0.025

684.9

± 40.2
100 45 ---- ---- -- 31.5 n/a n/a n/a n/a

Sawbone Cadaver #1 T - registration time, R - success rate, D - angle between consecutive images used in the experimentCadaver #2

Plot for Cadaver #1
experiment

Similarity Measures: Sawbone Images

0.0045

0.0055

0.0065

0.0075

0.0085

0.0095

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

GI Tx Ty Tz

Rx Ry Rz

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

MI

2.18

2.2

2.22

2.24

2.26

2.28

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

NMI

y

xz
Separation

angle

(1)

(2)

Fixed
images

Floating
images

(1) (2)

*Sum of the similarity measures of the 2 image pairs

Similarity Measures: Cadaver #1 (flat-panel)

(1)

(2)

y

xz

(1) (2)
Fixed

images

Floating
images

0.0081

0.0082

0.0083

0.0084

0.0085

0.0086

0.0087

0.0088

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

GI
Tx Ty Tz
Rx Ry Rz

1.72

1.77

1.82

1.87

1.92

1.97

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

MI

2.173

2.178

2.183

2.188

2.193

2.198

2.203

2.208

2.213

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

NMI

Challenges: Soft tissue and metallic instruments

Similarity Measures: Cadaver #2
(image intensifier)

(1)
(2)

y

xz

(1) (2)

Fixed
images

Floating
images

0.0198

0.0208

0.0218

0.0228

0.0238

0.0248

0.0258

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

GI
Tx Ty Tz
Rx Ry Rz

3.59

3.61

3.63

3.65

3.67

3.69

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

MI

2.095

2.1

2.105

2.11

2.115

2.12

2.125

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

NMI

Challenges: Soft tissue, metallic instruments, small separation angle

Due to small
separation angle

Result of 50 trials: comparison of
similarity measures

• All similarity measures showed almost the same performance in
Sawbone images.

• GI worked significantly better than MI and NMI in cadaver images

0

20

40

60

80

100

120

140

160

180

GI MI NMI GI MI NMI GI MI NMI
fi
n
a
l
m

T
R

E
(m

m
)

0

50

100

150

200

250

300

350

c
o

m
p

u
ta

ti
o

n
 t
im

e
 (

s
e
c
)

Computation time
Cadaver #1 (2 images)

Sawbone Cadaver 1 Cadaver 2

Comparison of DRR generator

• Step length didn’t affect
registration result in Sawbone
and Cadaver #2

• In Cadaver #1, increasing step
length increased final mTRE

Volume data
ray direction

step length

Tri-linear
interpolation

intersection
length

SiddonTri-linear
interpolation

Comparison of Optimization Strategy (coarse-to-
fine multi-resolution optimization)

• The effect of coarse-to-fine multi-resolution strategy was statistically
significant in Sawbone (P<0.001) and Cadaver 1 (P=0.026)

• No significant difference was found in Cadaver2 (because of the
resolution of the original images?)

0

2

4

6

8

10

12

Multilevel No
Multilevel

Multilevel No
Multilevel

Multilevel No
Multilevel

fi
n
a

l
m

T
R

E
 (

m
m

)

Sawbone Cadaver 1 Cadaver 2

Comparison of Optimizer

• In Cadaver #1 images, CMA-ES showed better precision
than Downhill Simplex.

• Other two experiments showed no difference
(To be confirmed by a statistical analysis)

0

2

4

6

8

10

12

CMA-ES
(R:100)

Simplex
(R:100)

CMA-ES
(R: 92)

Simplex
(R:84)

CMA-ES
(R:68)

Simplex
(R:70)

fi
n
a

l
m

T
R

E
 (

m
m

)
Sawbone Cadaver 1 Cadaver 2

Summary

• In 3 experiments, mean TRE was 0.229 ± 0.042mm,
1.404 ± 0.967mm, 3.241 ± 0.756mm, respectively.

• GI worked significantly better than MI and NMI in
presence of soft tissues.

• Coarse-to-fine multi-resolution strategy was
significantly effective

• Registration accuracy may depend on the target
anatomy, image quality as well as the geometries
(separation angles) of each image.

Next step

• Integration with navigation systems

– Bone augmentation navigation system, TREK, etc.

• Further cadaver studies

• Integration with reconstruction algorithms
that require registered prior CT

– SxMAC, ROI recon, Hybrid recon, etc.

