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Rapid Communications

Image Registration by Maximization of Combined Mutual can be concluded that the mutual information-based methods in the
Information and Gradient Information study were among the most accurate methods, achieving an accuracy
approaching that of the screw marker-based gold standard.
Josien P. W. Pluim*, J. B. Antoine Maintz, and Max A. Viergever ~ However, mutual information is not a panacean method. Despite the
general promising results, mutual information-based matching can re-

) ] ) sult in misregistration [8]-[11]. The mutual information registration

Abstract—Mutual information has developed into an accurate measure  ¢,nction can be ill-defined, containing local maxima. This can occur,
for rigid and affine monomodality and multimodality image registration. | h he i £l luti h he i
The robustness of the measure is questionable, however. A possible reasorf O €x@mple, when the images are of low resolution, when the images
for this is the absence of spatial information in the measure. The present contain little information, when there is only a small region of overlap
paper proposes to include spatial information by combining mutual infor-  or as a result of interpolation methods. Because itis evident that mutual
Q?;E’”Tvgghg?aﬁ;mntt;:fﬁdng? ct)rrl:leyl mage %(;a;'ig:tlg‘;g:;g:%?ﬁgtﬁ S;é?gf{ informationcanregister images well in general, but still fails occasion-
magnitude, but also aims for a similar orientation of the gradients at these a!ly, research into improving the method is ongoing. Improvements _Of
locations. different aspects of the method have been suggested, such as multires-

Results of combining both standard mutual information as well as anor-  olution methods [8], a different entropy measure [9], invariance with

malized measure are presented for rigid registration of three-dimensional respect to overlap [11], and “higher-order” mutual information, using
clinical images [magnetic resonance (MR), computed tomography (CT). ¢, _occurrence matrices of neighboring voxels'’ intensities [12].

and p_ositron emission_ tomography (EET)]: The re_sults indicate tha_t the In thi daptati fth tual inf fi
combined measures yield a better registration function does mutual infor- n this paper, we propose an adaptation of the mutual information

mation or normalized mutual information per se The registration functions ~measure to include spatial information that is contained in each of the
are less sensitive to low sampling resolution, do not contain incorrect global images separately. Mutual information does not contain this spatial in-
maxima that are sometimes found in the mutual information function, and  tgrmation (except in the interpolation of gray values). Setting aside in-

interpolation-induced local minima can be reduced. These characteristics . . . . .
yield the promise of more robust registration measures. The accuracy of the terpolation, arandom reshuffling of the image voxels (identical for both

combined measures is similar to that of mutual information-based methods. images) yields the same mutual information value as for the original
images. We combine mutual information with a gradient measure to

provide spatial information. Image gradients by themselves have been
shown to be useful registration criteria [10], [13].

Index Terms—tmage gradients, image registration, image structure,
multimodal images, mutual information.

. INTRODUCTION Il. METHOD

Of the multitude of image registration measures that have been ppo- Mutual Information

posed over the years (see [1] for an extensive survey), mutual infor- . . . . L
S . . The mutual information of two images is a combination of the en-
mation is currently one of the most intensively researched measures. . . .
. o . ropy values of the images, both separately and jointly. One interpre-
This attention is a logical consequence of both the favorable character: - : . e
- . . ation of entropy is as a measure of dispersion of a probability dis-
istics of the measure and the good registration results reported. Mutual™ . o . .
. L . . . riQution. A distribution with only a few large probabilities has a low
information is an automatic, intensity-based measure, which does no

. L entropy value; the maximum entropy value is reached for a uniform
require the definition of landmarks or features such as surfaces by Py

apd "7 . L
that can be applied in retrospect. Furthermore, it is one of the few Ixé?lstnbutlon. The entropy of an image can be computed by estimating

tensity-based measures that is well suited to registration of multimoég prob_ablllty distribution of the image intensities.
. . . In this paper, we use the Shannon measure of entropy,
images. Unlike measures based on correlation of gray values or difx

. . . —  plogp for a probability distribution”. The joint probability
ferences of gray values, mutual information does not assume a lin PEL ) . . . .
. - ; . Istribution of two images is estimated by calculating a normalized
relationship among the gray values in the images. - - . P
; . N joint histogram of the gray values. The marginal distributions are
Several independent studies have shown the suitability of mutdal, . . .
. - . . . D obtained by summing over the rows, respectively, the columns, of the
information as a registration measure for multimodal medical images ., .
[2]-[6]. Perhaps the best illustration of the performance of mutual illlqmt h'Stogr‘f"m' . . .
The definition of the mutual informatiodi of two images4 and

formation can be found in the Retrospective Registration Evaluati combines the marainal and ioint entronies of the images in the fol-
Project (RREP), an international study comparing the accuracy of%c% 9 ! P 9

registration methods against a screw marker gold standard [7]. Reglg\-"ng manner.
tration of computed_ tomography (CT)_ and positron emission tomog- I(A,B) = H(A) + H(B) — H(A,B).
raphy (PET) brain images to magnetic resonance (MR) images was
studied, with the experiments for ea(?h method being performed by th_‘?—|ere,H(A) andH ( B) denote the separate entropy valuesiaind
research group proposing that particular method. From the studygit respectivelyH (4, B) is the joint entropy, i.e., the entropy of the
joint probability distribution of the image intensities. Correct regis-
Manuscript received January 18, 2000; revised June 17, 2000. This resedfation of th_e Images 1s assumEd to be e_ql_J'Va'?”t to maximization of
was supported by the Netherlands Organization for Scientific Research. the mutual information of the images. This implies a balance between
Associate Editor responsible for the review of this paper and recommendingriténimization of the joint entropy and maximization of the marginal en-
pug“cst'v‘i/” I;"l’ﬁﬁn Mj Vg”g'e@;ﬁgsgr'%d;ﬂca;esv f;ggigfggénﬁﬂﬁgmage o jlropies. The joint entropy is minimal when the joint distribution is min-
ences Institute, University Mediéal Center Utrecht, Heidelberglaan 100, SSgHa”y d'Spersec_i’ "?" whenitis Cr'_Sp' This C_Orresm_)nds to registration,
CX Utrecht, The Netherlands (e-mail: josien@isi.uu.nl). because any misalignment of the images will both introduce new com-
Publisher Item Identifier S 0278-0062(00)07993-3. binations of gray values and decrease the probabilities of the “correct”
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combinations. The overall result is a more dispersed joint probability u1)

distribution. H
Recently, it was shown that the mutual information measure is sensi-

tive to the amount of overlap between the imagesraorhalizedmu-

tual information measures were introduced to overcome this problem.

Examples of such measures are the normalized mutual information in- 0 -
troduced by Studholmet al.[11] e
H(A H(B Fig. 1. Weighting function for gradient angles.
Y(A,B) = H(A) + H(B)
H(A, B)

and the entropy correlation coefficient used by Makal. [3]

2I(A, B)

These two measures have a one-to-one correspondence, and we w
therefore only us& (A, B) in this paper.
Fig. 2. Examples of the individual contributions of voxels to the gradient

B. Incorporating Gradient Information functionG for, respectively, MR-T1 and MR-T2, MR-T1 and CT, and MR-T1

. . . and PET. The slices shown are extracted from three-dimensional images. The
Image locations with a strong gradient are assumed to denote a tt@Rar;, with which mutual information is multiplied, is found by summing

sition of tissues, which are locations of high information value. Thever all voxels.
gradient is computed on a certain spatial scale. We have extended mu-

tual information measures (both standard and normalized) to inclugig, gradient magnitudes. Summation of the resulting product for all
spatial information that is present in each of the images. This eXtensQﬂnples gives us the gradient term with which we multiply the mu-
is accomplished by multiplying the mutual information with a gradient, 5| jnformation measure. Multiplication was preferred over addition,
term. The gradient term is based not only on the magnitude of the gfacause addition of the terms would require both terms to be normal-
dients, but also on the orientation of the gradients. ized. Some examples of the gradient measure (before summation) for
Simply applying mutual information to gradient images would seeffifferent combinations of multimodal images can be found in Fig. 2.

a logical solution to incorporating spatial information, were it not thafisg e transitions that are depicted in both modalities are emphasized.
the registration function would probably have a narrow attraction rangetpe proposed registration measure becomes

and that a lot of information from the gray value images is discarded.
We therefore propose a combination of mutual information and gra- Ihew(A,B)=G(A,B)I(A, B)
dient information.

The gradient vector is computed for each sample pwirt {z;, With
x2, x3} in one image and its corresponding point in the other image
x', which is found by geometric transformationsaf The three partial G(A,B) = Z
derivatives that together form the gradient vector are calculated by con- Gex)E(A N B)
volving the image with the appropriate first derivatives of a Gaussian Similarly, the combination of normalized mutual information and
kernel of scaler. The anglexx x/ (o) between the gradient vectors isgradient information is defined as
defined by

w(ax x (0)) min(|Vx(a)], |Vx'(0)]).

, Yoew(A, B) = G(A, B)Y (A, B).
ax x/(0) = arcco Vx(0) - Vx'(o)
(x . x/ = X S TS =

’ [Vx(a)| [Vx!(e)| o
C. Optimization
with Vx (o) denoting the gradient vector at poiof scaler and| - |

. . Optimization of the registration function is done using Powell’s
denoting magnitude.

énqethod [14]. This method repeatedly iterates the dimensions of the

For multimodal images, the different imaging techniques can le . ) . S
. - ) . S ; earch space, performing one-dimensional optimizations for each
to a tissue having different intensities in either image. As a result, theé . . :

imension, until convergence is reached.

gradients of the images can point in different directions. However, be- L : . -
. - . Because we rigidly register image volumes, the search space is six-
cause the images fundamentally depict the same anatomical structures,” . . . .
. . . . . o . dimensional, i.e., three rotations and three translations.
gradients in two multimodal images—at least in principle—will have
the same orientation and either identical or opposing directions. Con-
sequently, we use the following weighting functian which favors

both very small angles and angles that are approximately equal to To show the performance of our proposed measure, we consider a

Ill. RESULTS

(see Fig. 1): variety of registration problems: MR to MR, MR to CT, and MR to
‘(2a) +1 PET. The images involved are those used in the aforementioned RREP
w(a) = % comparison study. This set consists of pairs of CT and MR (PD, T1, and

T2) images of seven patients and pairs of PET and MR (PD, T1, and
Furthermore, the different imaging processes of different modalitid?) of seven patients. Also included amextified MR sets, corrected

imply that multimodal images do not necessarily depict the same tisfoe scaling and intensity inhomogeneity.

transitions. Hence, strong gradients that emerge with a certain imagindn Section 11I-A, we will highlight some typical registration func-

technique may be absent or less prominent with another technique. Baas for different registration problems, comparing the behavior for

cause we are only interested in including strong gradients that appeartual information, normalized mutual information, and the combina-

in both images, the angle function is multiplied by the minimum ofion measures. In Section IlI-B, we evaluate the accuracy of the com-
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Fig. 3. Registration functions for MR-T1 and T2 matching. From top to bottom: (i) rotation around an in-plane akisnfijmages subsampled by a factor of
three in each dimension, and (iii) translation along an in-plane axis.

bination measures for registration of MR/CT and MR/PET image pairasult of interpolation. The interpolation method used (linear interpola-
by comparison to bone marker-based solutions. tion) influences the entropy measures by blurring noise and other small
In the computation of the gradients, our choice of scale was masitructures. Noise increases the dispersion of a probability distribution
vated by past research on edge-based measures for image registratiol) hence, its entropy. The local minima in the function correspond
[13], which demonstrated the best performance of edge-based niearanslations that align the image grids (the images have equal voxel
sures at smaller scales. Searching for a tradeoff between small ssétes). For such translations, interpolation is not applied, resulting in a
and image resolution, we have opted far af 1.5 mm for all images. higher joint entropy because of the presence of noise and a decreased
mutual information value (see [15] for a more detailed explanation). In
A. Registration Functions the registration functions of the combined measures, the artifacts are

1) MR-T1 and MR-T2:Registration of MR-T1 and MR-T2 nearly eliminated.
weighted images is probably the best test case for a gradient-based) MR-T1 and CT: Although MR images depict different anatom-
method. Although the images are multimodal in the sense that differé¢d! details than CT images, there generally are corresponding
tissue characteristics are imaged, the structure in the images is sinfifi¢ctures—and, hence, corresponding gradients—in both images.
and we would expect to find gradients at corresponding locatiorfgg- 4 shows some examples of MR-CT registration functions, around
Fig. 3 contains registration functions for matching of an MR-T1 anite marker-based gold standard solution. Again, we first show an ex-
an MR-T2 image, using mutual informatidif), normalized mutual ample of a well-defined mutual information function (rotation around
information(Y"), and both proposed combination measyies., and an in-plane axis, top row) and find that the function is not significantly
Y. ). We assume no transformation is required to align the imagedtered by the inclusion of gradient information. When subsampling
The top row shows the functions for rotation around an in-plarfBe images by a factor of three (middle row), the mutual information
axis. Clearly, the original mutual information function can hardly b&unction deteriorates rapidly, the normalized mutual information
improved on, and the functions for the combined measures are nedfction is less affected, though it also loses smoothness, while the
identical. The normalized mutual information function has a loc&unctions for the combined measures are virtually unchanged. The
minimum at the position of correct alignment, which is probably final example plots the measures as a function of translation in the
result of interpolation [15]. slice direction. The images have an equal slice thickness, which

As mutual information is based on estimating probability diseXplains the occurrence of artifacts.
tributions, the registration function is generally less smooth when3) MR-T1 and PET:Registration of MR and PET images is a con-
the number of samples is small, as, for example, in multiresolutigifierably more difficult problem than the previous two, both because
methods. In the middle row of Fig. 3, we show the registraﬂoﬁf the fewer similarities between the image contents and because of
functions for rotation around an in-plane axis after the images half¢ lower intrinsic resolution of PET images. Experience has taught
been equidistantly subsampled by a factor of three in each dimensi#iat mutual information-based matching of these images can often re-
The smoothness of the mutual information function has significantfyIt in misregistration. Problems occur usually not because of a lack of
decreased; worse yet, the optimum has moved. In the normaliZggoothness, but because the function is ill-defined, having prominent
mutual information function, the local minimum has become mor@axima away from the true optimum. Examples of ill-defined mutual
pronounced and the function is less smooth. In contrast, the registratidi@rmation functions can be found in Fig. 5, top two rows. The figure
functions for the combined measures remain smooth and the optim&f@ws registration functions of an MR-T1 and a PET image for which
did not shift. A|th0ugh the smoothness of the mutual informatioﬂagistration with both mutual information and normalized mutual infor-
registra’[ion functions can be improved on to some extent by md}T@tiOﬂ resulted in mismatches. The zero pOSition in the functions pre-
advanced downscaling methods, these examples illustrate that $aBted corresponds to the marker-based solution. From top to bottom,
combined measures are less sensitive to the number of samples. registration functions are given for each of the six rigid transformation

In the bottom row of Fig. 3, the behavior of the measures for trangarameters.
lation in the in-plane direction is shown. The local minima in the mu- The cause of the misregistrations is clearly visibly in the top two
tual information and normalized mutual information functions are @ws: for both out-of-plane rotations, the standard and normalized
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three in each dimension, and (iii) translation in slice direction.
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Fig. 5. Registration functions for MR-T1 and PET matching.

mutual information functions are ill defined (a result of large slicéunctions for out-of-plane rotation are vastly improved (rightmost two
thickness and a small number of slices). By attempting several startc@umns). The functions now show a global optimum close to the
positions, a reasonable match could be found for these images, becansiker-based solution.

the functions contain small local maxima in the vicinity of the true In the third row (in-plane rotation), the position of the global op-
optimum. However, it is obvious that optimization of such functionimum for the combined measures is closer to the gold standard solu-
will not be robust. By including gradient information, the registratiotion compared to the global optima of standard and normalized mutual
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TABLE | TABLE 1
REGISTRATION RESULTS FORMRI AND CT IMAGE PAIRS (IN mm) REGISTRATION RESULTS FORMRI AND PET IMAGE PAIRS (IN mm)
median maximum median maximum

I Y  lLiew Yaew 1 Y Iiew Yaew n I Y  Inew  Yaew I Y  Inew Yaew n
T1 1.07 084 121 1.37 2.23 2.08 223 291 7 T1 237 190 246 243 3891 7474 6.65 878 7
PD 142 143 153 1.73 320 395 290 3.08 7 PD 233 224 3.04 267 513  6.55 7.55  6.82 7
T2 148 151 129 1.63 879 3.02 316 3.01 7 T2 251 240 313 227 724 538 6.05 791 7
Tirect 071 0.61 0.78 0.80 1.69 100 162 215 6 Tlrect 1.82 134 212 1.29 351 356 3.62 4.29 4
PDrect 068 071 0.69 087 1.49 1.19 167 240 7 PDrect 272 288 207 297 6.00 3.78 6.29 6.44 5
T2rect 072 063 089 1.04 354 220 1.83 299 7 T2rect 2.74 267 224 162 6.95 525 3.27 542 5

information. The registration functions for in-plane translations (ronarroneous maxima and leading to the global maximum from larger ini-
four and five) are well defined for all measures. Interpolation-inducdél misregistrations. The measures perform better for low-resolution
local minima are found in the registration functions for translation itmages and decrease interpolation-induced local minima.
the slice direction (bottom row), since the slice thicknesses of the im-In cases in which standard mutual information performs well, the
ages have a common factor. The inclusion of gradient information megistration functions of the combined measures are similar and the
duces the artefacts, as can be seen in the rightmost two functions. global optimum does not alter significantly.

The accuracy of the combined measures was shown to be similar
B. Accuracy to that of standard and normalized mutual information. Registration

The accuracy of the proposed measures has been tested by co jpg the combined measures is likely to be more robust because of
ison of the registration results against a marker-based gold stand&?§. better defined registration functions. No distinct differences were
Each pair of either CT or PET and MR (PD, T1 and T2, both rectfound between combined measures based on standard or normalized
fied and nonrectified) from the RREP study was registered using tA#/tual information.
four measures discussed in this paper. Bone marker-based solutionzeveral issues of the method can be improved on or should be inves-
were available for these registration cases. Registration errors betwiligated further. The robustness of the combined measures should be re-
a transformation and the gold standard were computed at the centerg&srched more extensively. The robustness of standard and normalized

several volumes of interest in the data sets, as in the RREP study (Ségual information was studied by Studholetel.[11], showing poor
[7] for more detail). robustness for mutual information and good performance for normal-

To minimize the dependence of the results on the optimizati¢fed mutual information. However, weaveencountered a mismatch

method, the starting position of all registration experiments was tged ill-defined registration functions for normalized mutual informa-

marker-based gold standard transformation. Tables | and Il summarig§ (only for the nonrectified MR images, which were not included in

the registration results for all four measures. The median errgitudholme’s study). Another important topic is the dependence of the

maximum error, and number of data sets are given. method on the scaling parameter in the gradient computation. Directly
Statistical testing of the median errors (two-tailed paired stutlentinked is the matter of differences in intrinsic resolution. PET images

test,p = 0.05) found no significant difference in the results of the muhave a significantly lower intrinsic resolution than MR images, and itis

tual information measures versus the corresponding combination me@ssible the method can be improved on by taking this difference into

sures. Neither when the significance tests were performed on all d@g&ount.

sets, nor when the results were divided into four categories (by CT/PET,

rectification/no rectification). ACKNOWLEDGMENT

Registration using standard mutual information resulted in two mis- 1, images were provided as part of the project, “Evaluation of

registrations, a case of CT-T2and a case of PET-T1, where aresult Wagrospective Image Registration,” National Institutes of Health,
considered a mismatch when the average error over the volumes OfFi?éject Number 1 RO1 NS33926-01, Principal Investigator Dr. J.

terest was larger than the largest voxel dimension (4 mm for CT ang 8 ritnatrick, Vanderbilt University, Nashville, TN. The authors
mm for PET). Normalized mutual information failed once (PET-T1)yre jndebted to Dr. J. West for his assistance. They also thank the

The corresponding maximum errors are an indication of the extent,Qfy),ratory for Medical Imaging Research in Leuven (especially, Dr.
the misregistration. The combined measures yielded satisfactory reSF—‘.lti/laes) for kindly supplying them with their software for mutual

in all cases. information-based registration.

IV. DISCUSSION REFERENCES

We have proposed the adaptation of mutual information measuresyi] J.B. A. Maintz and M. A. Viergever, “A survey of medical image regis-
by incorporating spatial information. The measure combines either  tration,” Med. Image Ana).vol. 2, no. 1, pp. 1-36, 1998.
standard or normalized mutual information with gradient information. [2] V,\\/A ’\Iltl Wed”SI ”',I P. Viola, tH-t{’-\tSl;)miv S._Ngka;jima,fandt R'I ,Kifki”isy
H H : H H : ulti-moaal volume registration maximization or mutual Informa-
'I_'he essence of the gr_adlent |nfc_)rmat|on is that, a_t registration, loca- tion,” Med. Image Ana]_g\]/ol. 1, no. 1y pp. 35-51, 1996.
tions with a large gradient magnitude should be aligned, but also that[S] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
the orientation of the gradients at those locations should be similar. “Multimodality image registration by maximization of mutual informa-
The results presented in this study indicate that the combined mea-  tion,” IEEE Trans. Med. Imagvol. 16, no. 2, pp. 187-198, 1997.
sures yield registration functions outperforming both the standard mu-4] C. R.Meyer, J. L. Boes, B. Kim, P. H. Bland, K. R. Zasadny, P. V. Kison,
tual information function with respect to smoothness and attraction K. Koral, K. A. Frey, and R. L. Wahl, "Demonstration of accuracy and
. . i ) clinical versatility of mutual information for automatic multimodality
baSIn as We” as a normallzed mutual |nf0rmat|on measure. The funC' image fusion using affine and thin_p|ate Sp”ne Warped geometric defor-

tions of the combined measures are better defined, containing fewer mations,”Med. Image Analvol. 1, no. 3, pp. 195-206, 1997.
[5] C.Studholme, D.L.G.Hill,andD. J. Hawkes, “Automated three-dimen-
Iplease note that these errors are not directly comparable to those of other  sional registration of magnetic resonance and positron emission tomog-
methods, because the gold standard transformation was used as the starting po- raphy brain images by multiresolution optimization of voxel similarity
sition. measures,Med. Phys.vol. 24, no. 1, pp. 25-35, 1997.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on November 4, 2009 at 09:55 from |IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 8, AUGUST 2000 814

[6] P. Viola and W. M. Wells Ill, “Alignment by maximization of mutual [10] G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J.

information,” Int. J. Comput. Visioyvol. 24, no. 2, pp. 137-154, 1997. Hawkes, “A comparison of similarity measures for use in 2D-3D med-
[7] J. West, J. M. Fitzpatrick, M. Y. Wang, B. M. Dawant, C. R. Maurer, Jr., ical image registration,1IEEE Trans. Med. Imag.vol. 17, no. 4, pp.

R. M. Kessler, R. J. Maciunas, C. Barillot, D. Lemoine, A. Collignon, F. 586-595, 1999.

Maes, P. Suetens, D. Vandermeulen, P. A. van den Elsen, S. Napel, T. f11] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant

Sumanaweera, B. Harkness, P. F. Hemler, D. L. G. Hill, D. J . Hawkes, C. entropy measure of 3D medical image alignmefgttern Recognit.

Studholme, J. B. A. Maintz, M. A. Viergever, G. Malandain, X. Pennec, vol. 32, no. 1, pp. 71-86, 1999.

M. E. Noz, G. Q. Maguire, Jr., M. Pollack, C. A. Pelizzari, R. A. Robb, D. [12] D. Rueckert, M. J. Clarkson, D. L. G. Hill, and D. J. Hawkes,
Hanson, and R. P. Woods, “Comparison and evaluation of retrospective ~ “Non-rigid registration using higher-order mutual information,” in

intermodality brain image registration techniquek,Comput. Assisted Medical Imaging: Image Processing. M. Hanson, Ed. Bellingham,
Tomogr, vol. 21, no. 4, pp. 554-556, 1997. WA: SPIE Press, 2000.

[8] P. Thévenaz and M. Unser, “Spline pyramids for inter-modal image[13] J. B. A. Maintz, P. A. van den Elsen, and M. A. Viergever, “Comparison
registration using mutual information,” iWavelet Applications in of edge-based and ridge-based registration of CT and MR brain images,”
Signal and Image Processing\.. Aldroubi, A. F. Laine, and M. A. Med. Image Anal.vol. 1, no. 2, pp. 151-161, 1996.

Unser, Eds. Bellingham, WA: SPIE Press, 1997. [14] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterlias

[9] C. E. Rodriguez-Carranza and M. H. Loew, “A weighted and de- merical Recipesin C Cambridge, U.K.: Cambridge Univ. Press, 1992.
terministic entropy measure for image registration using mutual[15] J.P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Interpolation arte-
information,” in Medical Imaging: Image Processing. M. Hanson, facts in mutual information-based image registratic®@gdmput. Vision
Ed. Bellingham, WA: SPIE Press, 1998. Image Understandingrol. 77, no. 2, pp. 211-232, 2000.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on November 4, 2009 at 09:55 from |IEEE Xplore. Restrictions apply.



