Accelerated ray tracing for radiotherapy dose calculations on a GPU

M. de Greef,a) J. Crezee, J. C. van Eijk, R. Pool, and A. Bel

Department of Radiation Oncology, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam,
The Netherlands

(Received 16 February 2009; revised 2 July 2009; accepted for publication 2 July 2009;
published 12 August 2009)

Purpose: The graphical processing unit (GPU) on modern graphics cards offers the possibility of
accelerating arithmetically intensive tasks. By splitting the work into a large number of independent
jobs, order-of-magnitude speedups are reported. In this article, the possible speedup of PLATO’s
ray tracing algorithm for dose calculations using a GPU is investigated.

Methods: A GPU version of the ray tracing algorithm was implemented using NVIDIA’s CUDA,
which extends the standard C language with functionality to program graphics cards. The developed
algorithm was compared based on the accuracy and speed to a multithreaded version of the PLATO
ray tracing algorithm. This comparison was performed for three test geometries, a phantom and two
radiotherapy planning CT datasets (a pelvic and a head-and-neck case). For each geometry, four
different source positions were evaluated. In addition to this, for the head-and-neck case also a
vertex field was evaluated.

Results: The GPU algorithm was proven to be more accurate than the PLATO algorithm by
elimination of the look-up table for z indices that introduces discretization errors in the reference
algorithm. Speedups for ray tracing were found to be in the range of 2.1-10.1, relative to the
multithreaded PLATO algorithm running four threads. For dose calculations the speedup measured
was in the range of 1.5-6.2. For the speedup of both the ray tracing and the dose calculation, a
strong dependency on the tested geometry was found. This dependency is related to the fraction of
air within the patient’s bounding box resulting in idle threads.

Conclusions: With the use of a GPU, ray tracing for dose calculations can be performed accurately
in considerably less time. Ray tracing was accelerated, on average, with a factor of 6 for the
evaluated cases. Dose calculation for a single beam can typically be carried out in 0.6—-0.9 s for
clinically realistic datasets. These findings can be used in conventional planning to enable (nearly)
real-time dose calculations. Also the importance for treatment optimization techniques is

evident. © 2009 American Association of Physicists in Medicine. [DOI: 10.1118/1.3190156]

Key words: radiotherapy, dose calculation, GPU, graphics card, treatment planning

I. INTRODUCTION

Ray tracing is an important and time consuming step in dose
calculations for radiotherapy. For a 3D CT dataset, the rela-
tive electron density has to be line integrated from the source
position to every volume element (voxel) in that dataset.
Moreover, for radiotherapy treatment planning, this process
must be repeated for each source position (gantry angle) to
determine the total dose in each voxel.

The traditional way of designing a treatment plan consists
of a manual determination of the optimal beam configuration
iteratively. Every adjustment requires recalculation. Typi-
cally, calculating the contribution of a single beam to the
dose distribution requires 15-60 s of the calculation time. If
dose calculations could be performed real time, a major re-
duction in workload is achieved. Furthermore, optimization
of intensity modulated radiotherapy (IMRT) plans with vari-
able beam angles is a computationally intensive task. This
applies especially to recent developments such as volumetric
modulated arc therapy,1 intensity modulated arc therapy,z’3
and/or tomotherapy.4’5 Speed improvement is also important
in view of the growing amount of data acquired just prior or

4095 Med. Phys. 36 (9), September 2009

0094-2405/2009/36(9)/4095/8/$25.00

during treatment.’ Image-guided radiotherapy can lead to
adaptive procedures with possible replanning during the
course of treatment.

Multicore processors have now become common. How-
ever, faster execution can only be achieved using multi-
threading, which requires rewriting of the algorithm. More-
over, the speedup is related to the number of cores, leading to
a maximum speedup of four times in practice.

Another, rather expensive, option is using large CPU clus-
ters. However, the associated overhead, which comes with
network data transfer and thread scheduling, is large com-
pared to the present execution time.

The ray tracing algorithm currently used in our depart-
ment (as implemented in PLATO) is based on the algorithm
proposed by Siddon.” This algorithm is widely used in vari-
ous radiotherapy treatment planning systems. Since its pub-
lication, the Siddon algorithm has been optimized for dose
calculations in PLATO.® However, there is still room for im-
provement for accurate (quasi) real-time user interaction and
the advanced planning techniques mentioned earlier.

Since about 2000, the use of commodity graphics hard-
ware for high-performance computing has become a subject

© 2009 Am. Assoc. Phys. Med. 4095

http://dx.doi.org/10.1118/1.3190156
http://dx.doi.org/10.1118/1.3190156

4096 de Greef et al.: GPU accelerated dose calculation

of research for an increasing number of research groups in
various fields. Designed for processing large amounts of data
in parallel, the graphical processing unit (GPU) is used to
speed up arithmetically intensive computational tasks.’ This
use of a the GPU outside its original context of computer
graphics is referred to as general purpose computation on the
GPU. The reported speedups are achieved by separating an
arithmetically intensive task in a large number of lightweight
tasks, threads, which operate on their own data. It is impor-
tant that threads are not dependent on the (intermediate) re-
sults of other threads; this is referred to as data indepen-
dence. Ray tracing for dose calculations is a good candidate
for execution on the GPU. A large number of rays have to be
traced and there is no dependency between these rays. The
aim of this study is to investigate the possible acceleration of
the presently used ray tracing algorithm for radiotherapy
dose calculation using a GPU.

Il. MATERIALS AND METHODS
Il.LA. General purpose computation on the GPU

Since about 2000, the field of general purpose computa-
tion on GPUs is growing. Modern graphics cards have be-
come highly programable and are developing fast regarding
their computational capacities.lo Traditionally, toolkits for
computer graphics such as OpenGL and DirectX were used
to perform calculations outside of the computer graphics
context. This approach is referred to as compute by drawing:
A computational problem is translated into a graphical/
visualization problem. This requires implementation of algo-
rithms in a graphical programming language.

Apart from the compute-by-drawing strategy, there are a
number of toolkits that allow programming on a more ab-
stract level, closer to high-level programming languages. Ex-
amples of these languages are Brook,"! RapidMind,12 and
CUDA (compute unified device architecture) by NVIDIA."
In this study the latter language was used. CUDA is an ex-
tension of standard C that is preprocessed by a compiler
driver and compiled using a C compiler. CUDA uses a data-
parallel programming model where a large number of paral-
lel threads are organized in a two-dimensional grid. Within a
grid, blocks are specified that serve as a unit in resource
assignment (Fig. 1).

I.B. Siddon’s algorithm for exact calculation of the
radiological path

Since the GPU ray tracing algorithm for dose calculations
will be based on the algorithm by Siddon,” the original algo-
rithm is briefly summarized here. The algorithm is based on
the representation of a 3D dataset as three sets of orthogonal
planes. For a ray, traveling from the source to a point in the
volume, the voxels through which the ray travels can be
determined with the aid of these planes. The radiological
path length (RPL) is found by summation of the length trav-
eled by this ray in each voxel, multiplied by the relative
electron density of the voxel. Figure 2 shows this procedure
schematically. It should be noted that this method is different

Medical Physics, Vol. 36, No. 9, September 2009

4096

\
thread index y

index x

block index y
_>

block index x

FIG. 1. The principle of a grid used to organize a number of parallel threads.
A grid consists of a number of blocks that are identified by a block index.
Within a block, the thread index identifies threads.

from methods that use numerical integration by sampling of
the density along the ray trajectory. In contrast to the method
used in this study, such a technique can show irregular be-
havior since the sampling distance has an impact on which
voxels are taken into account and which ones are not.

The path of a ray is represented using the following pa-
rameterization:

x=x;+alx,—x)), (1)
y=yi+aly,=y), (2)
=g+ a(z-21), (3)

where index 1 refers to the source position, index 2 to the
center of the voxel the ray is traced to, and « is the distance
traveled divided by the source-voxel distance. Now the
dataset can be expressed as

X, =X, +iAX, 4)

source point

high density

low density

FIG. 2. Schematic 2D illustration of ray tracing as used in radiotherapy dose
calculations. A ray is traced from the source to all the voxels in the dataset.
The voxels a ray travels through on its way to a certain voxel in the dataset
are collected so that the length of the fragments can be density weighted.

4097 de Greef et al.: GPU accelerated dose calculation
Y;=Y,+jAY,)

Z = Zplane[k] > (6)

where the use of capital symbols refers to the fact that the
coordinates indicate plane positions, AX and AY are the
voxel dimensions in the x and y directions respectively, i, j,
and k are plane indices, and X, and Y are the x and y coor-
dinates of the planes that are defined by 7 and j equal to zero,
respectively. In contrast to the original algorithm, the dataset
is allowed to be nonequidistant in the z direction. The reason
for this is that CT scans for radiotherapy treatment planning
may be acquired with varying slice thickness. The plane po-
sitions are stored in array zp,,.. From Egs. (1)-(6), the value
of « at an intersection of the ray with a plane can be easily
calculated. For the intersection of the ray with planes, i, j,
and k, it is found that

X, + iAX —
ai) =~ 2270 7
Xy — X1
Yo+ jAY -y
a,y(]) - g’ (8)
Y2—=V1
Z. -z
a (k)= 2= ©)
=7

for a,(i) and a,(j), this can be written in recursive form as

a(i)=ali-1)+ =a(i- 1)+ da,, (10)

X2 — X

a,(j) = a,(j— 1) + = a,(j— 1)+ Sa,. (11)

Y2=)1

Note that since the distance between two planes in the z
direction is allowed to vary, such a recursive relation cannot
be formulated for this direction. Using Eqgs. (9)—(11), the
values of « for all the intersections between the source point
and the voxel the ray travels to can be calculated. This has to
be done for every orthogonal plane direction and the results
are stored in three different arrays

a, = {ax(imin)7 (KR ax(imax)}’ (12)
ay, = {ay(jmin)’ (R ay(jmax)}’ (13)
a, = {a’z(kmin)7 LR a’z(kmax)}7 (14)

where subscripts “min” and “max” denote the first and last
intersections of the ray with the orthogonal planes when trav-
eling from the source to the target voxel.” When merging
these three lists together with a,,;, and a,,,, this results in

a= {amin’ merge(ay, Q’y5 Q’z)a amax}’ (1 5)

where the merge operation as described by Siddon’ creates
an array with all the elements of «,, a,, and «, in ascending
order. Two consecutive elements from « are associated with
entering and leaving a voxel. The length traveled in a voxel
is therefore given by

Medical Physics, Vol. 36, No. 9, September 2009

4097

I(m) = (a(m + 1) — a(m))d,,, (16)

where [(m) is the length traveled in the mth voxel the ray
passes when traveling from the source to the target voxel, d,
is the source-voxel distance. The voxel indices p and g can
be calculated by

X1+ amiabe = x1) = Xo
p(m) = AX ‘ (17)
(Mt Aia(Y2 = y1) — Yo‘

where |-] denotes the truncation operator and a4 is given by

~1
a’mid=%' (19)

The index in the z direction follows from a look-up table.
The extent in the z direction in discretized into N(=2048)
intervals and for every interval the corresponding slice index
is stored in an array zj,qex- Using this approach, the slice
index for a given z coordinate can be calculated by

21+ @ig(2 = 21) = Zo‘
(Zmax - ZO)/N ’

(20)

r(m) = Zindex|:

where Z,,, is the last "Z-plane”. With this method the slice
index can be retrieved fast. However, this comes at the cost
of errors due to the discretization. The RPL is then eventu-
ally found by

N
RPL =d,, >, p(p(m),q(m),r(m))(a(m+ 1) — a(m)), (21)

m=1

where p is the relative electron density.

Il.C. Method 1: Reference CPU algorithm

Siddon’s algorithm7 was modified in two respects for the
purpose of optimization. This optimized algorithm is part of
PLATO’s dose calculation.® First of all, the volume that is
ray traced can be limited to the volume inside the bounding
box of the body contour because that is generally the volume
of interest. As a side effect, the number of unnecessary loads
from dynamic random access memory (DRAM) to cache
memory is reduced.

The second optimization is based on reusing values of a.
For all target voxels in a plane for which x is constant, the
values of «, for all “X planes” can be calculated once and
reused for all voxels in this plane. The same holds for all
voxels on a line in this particular plane for which y is con-
stant. Here the values of «, can be calculated once for all ¥
planes and they can be reused for all voxels in this line. In
this way the number of intersections for which the value of «
has to be calculated can be largely reduced. Timing of both
stratesgies showed a reduction of 40%—60% in the calculation
time.

4098 de Greef et al.: GPU accelerated dose calculation

4098

TaBLE 1. Specification of the hardware of systems I and II.

System [

System 11

CPU clock frequency (GHz) 2.66
Intel® Xeon® quad-core
NVIDIA®GeForce®8800 GTS

Processor type
Graphics card type
No. Processor cores”
Memory bandwith (Gbytes/s)
Graphical memory (Mbyte)

2.66
Intel®Q9400 quad-core
NVIDIA®GeForce®GTX 280
240
141.7
1024

“Reference 13.

The optimized CPU algorithm, using multithreading, will
be referred to as the reference algorithm. This version is the
current validated clinical standard as implemented (single
threaded) in PLATO.

1I.D. Method 2: GPU algorithm

Data parallelism was exploited by making every thread
responsible for ray tracing to a single voxel in the region of
interest. Rays can be traced completely independent and
therefore this approach fits CUDA’s programming model
well.

Implementing Siddon’s algorithm7 on the graphics card
required rewriting that part of the algorithm where a,, a,,
and ¢, are computed and stored. For a CT dataset of size
512X 512X 100, the following worst case estimation can be
made for the dimensions of a,, a@,, and a,. If the source
position is along the main diagonal of the CT volume and
just outside the dataset, based on symmetry, the number of
intersections is approximately half of the number of planes
on average, i.e., 256, 256, and 50, respectively. Conse-
quently, 2 X562 floating-point numbers will be needed for
every voxel, on average, to store the three lists and the
merged result. This means that in total, approximately
100 Gbytes of memory is needed. Even though this is a very
coarse estimation and largely overestimates the required
amount of memory in practice, it illustrates that with this
approach the available graphical memory will be insufficient.
For this reason, the algorithm was rewritten by using a step-
ping approach. The algorithm in the Appendix describes the
tracing procedure schematically.

After the determination of the value of « at the entrance
of the volume (a,,;,), the potential next intersecting plane is
calculated for three directions. These intersecting planes cor-
respond tO iin, Jmins @0d kp;,. Furthermore, the index of the
entrance voxel in the linear array holding the density is de-
termined.

After these initialization steps, the algorithm continues
with a loop where the next intersecting plane is determined.
This is achieved by computing the minimum of the value of
« for the three potential next planes of intersection. This next
intersecting plane now becomes the current plane of intersec-
tion and a new potential plane of intersection is calculated.
This loop is continued until the value of « for the current

Medical Physics, Vol. 36, No. 9, September 2009

intersecting plane is larger than or equal to unity. In order to
access the the elements of z,,,. fast, this array is stored in
the constant memory of the graphics card."”

Voxel indices in the x and y directions are calculated from
the value of ;4. In the z direction the index is updated
when leaving the current slice. Using this approach, the use
of a look-up table in the z direction has become obsolete.
This also eliminates the related discretization errors present
in the reference algorithm.

I.E. Performance and accuracy analysis

The GPU algorithm was tested for accuracy and perfor-
mance on two systems. Their specifications are summarized
in Table I. Both systems have 32-bit Linux as their operating
system (Fedora 8). All tests were done under CUDA version
1.1. The block size was chosen to be 16 X 16 threads for all
evaluated cases. Based on hardware specifications, CPU tim-
ings are considered interchangeable for systems I and II.

A set of test geometries was defined. Table II gives a
description of the used test geometries, and Table III de-
scribes the evaluated test cases. The different test cases were
defined for resampled geometries with resampling factors
(A,) ranging from 1 to 4. The resampling factor is the reduc-
tion in resolution in the XY plane applied to both the X and Y
directions. The resampling strategy, following the PLATO
convention, is illustrated in Fig. 3.

TaBLE II. Description of the different datasets that were used for perfor-
mance and accuracy analysis. The bounding box is the smallest box that fits
the patient. Original in-plane dimensions of the CT datasets are 512 X 512.
Geometry A is a homogeneous water phantom. Geometries B and D are
radiotherapy planning CT datasets of the pelvic region and geometry C is a
planning CT of the head-and-neck region. As an illustration, Fig. 4 shows
the central transversal slice for every dataset.

Spacing
Geometry No. of slices Bounding box (—) (mm)
A 31 452 X452 0.7 10.0
B 35 448 X260 0.82X5.0
C 103 499 X292 0.92x 3.0
D 56 308 X 190 0.92X 3.0

4099 de Greef et al.: GPU accelerated dose calculation

TaBLE III. Definition of five test cases. Test cases I-IV have been evaluated
for test geometries A, B, and C. Test case V corresponds to irradiation with
a vertex field and is therefore evaluated for test geometry C only. Figure 4
illustrates cases I-IV. A, is the in-plane spacing relative to the original
spacing.

¢gantry ¢lable
Test case A, (—) (deg) (deg)
1 1 0 0
I 2 45 0
111 4 90 0
v 4 270 0
v 1 90 90

ILE.1. Accuracy

Since the GPU ray tracing algorithm does not use a
look-up table, the reference algorithm (described in Sec.
II C) was extended with a more elaborate but exact algorithm
to determine the corresponding slice index for a given z co-
ordinate. This algorithm will be referred to as CPU hunt
from here on'* and is used as an accuracy benchmark for the
GPU algorithm.

In addition, the GPU algorithm was compared to the ref-
erence algorithm to asses the effect of discretization errors
resulting from the look-up table implementation.

FiG. 3. Illustration of the resampling strategy, here for a resampling factor
of 2. Four voxels, numbered from O to 3, are reduced to one voxel. The
relative electron density is determined by the value of voxel 0. Resampling
is applied in 2D, i.e., within the same CT slice.

(@) (b)

4099

TABLE IV. Maximum absolute difference in RPL mm between the CPU-hunt
algorithm and the GPU algorithm.

Test Geometry

Test case A B C
I 0.002 0.050 0.064
11 0.001 0.009 0.045
11 0.001 0.006 0.005
v 0.000 0.004 0.007
\'% - - 0.011

I.LE.2. Performance

Besides accuracy analysis, the performance of the GPU
algorithm relative to the multithreaded CPU algorithm was
investigated. Computation time was measured between the
start of both ray tracing algorithms and the moment the re-
sults are stored in DRAM. For the GPU algorithm this means
that the time needed to transfer the data from graphical
memory to DRAM is included. Time required for initializa-
tion, e.g., transfer of data from DRAM to graphical memory
(typically <20 ms) and driver initialization (typically
100—200 ms) was excluded. The rationale for this choice is
that for one planning session this is only done once while the
actual ray tracing is performed numerous times.

As an additional performance benchmark, the gantry
angle was rotated over 20° with 1° steps and for each source
position the contribution to the dose distribution was calcu-
lated using both the reference and the GPU algorithm. Dose
calculations were carried out for a 10X 10 cm? field for two
test geometries, C and D. Timings were performed using a
resampling factor of both 1 and 2. In contrast to the GPU
dose calculations, CPU dose calculations make a distinction
between the beam volume extended with a margin (2 cm)
and the remaining volume. Inside the first the specified re-
sampling factor is used, outside a resampling factor of 8 is
used. For geometry C, independent of the gantry angle, the
field will “cover” the patients’ head/neck. Here a starting
angle of 0° was chosen. For geometry D, a pelvic case, a
substantial part of the volume will be handled by the CPU

FIG. 4. Transversal midplane for all test geometries. Roman symbols indicate test cases I-IV. For geometry D, the arc of source positions used for the dose

calculation timings is indicated.

Medical Physics, Vol. 36, No. 9, September 2009

4100 de Greef et al.: GPU accelerated dose calculation

o
o i
o
G
i)
o
3 0.1 F E
o
(]
[oh)
o 0.01 F E
2 i
o L
& 0.001 F i
3 i
E
- \
O 0.0001 E
1e-05 L i i i i i i i
0 10 20 30 40 50 60 70 80

RPL difference [0.1mm]

FiG. 5. Cumulative histogram of the absolute difference between the RPL
calculated with the GPU and the CPU algorithm for test geometry C. The
resampling factor was chosen to be 2.

algorithm using a downsampled geometry when starting with
a gantry angle of 0°. For this reason, the arc was started at
45°.

lll. RESULTS
lll.A. Accuracy analysis

lll.LA.1. GPU versus CPU hunt

Table IV shows the results of the comparison of the CPU-
hunt algorithm with the presented GPU algorithm. For all

= 5
> S)

R - —

—— ~ i
=

/ B =
—
S —

— e

(a)

(b)

FIG. 6. An example absolute difference map of the RPL for geometry C
with the corresponding CT slice (31) for test case II. White, gray, and black
correspond to 0-0.9, 0.9-1.8, and =1.8 mm, respectively. Discretization
errors at the body contour of the patient yield RPL differences projecting at
the neighboring slices. Differences from multiple slices can project on the
same slice as is clearly visible in this example. As can clearly be seen, there
is a close resemblance between the body contour of this slice and the upper
“contour” in the RPL difference map.

Medical Physics, Vol. 36, No. 9, September 2009

4100

TABLE V. Timing of the reference (multithreaded CPU) and the GPU ray
tracing algorithm on systems I and II for test geometry A. S denotes
speedup, GPU execution time relative to CPU execution time.

System I System II
CPU GPU GPU
Test case (s) (s) S(-) (s) S (=)
I 7.52 1.91 3.9 0.85 8.9
11 1.31 0.32 4.1 0.15 8.9
11T 0.21 0.06 3.8 0.02 10.1
v 0.18 0.05 3.6 0.02 8.4

evaluated test cases, the maximum difference found was
0.064 mm. The results given by the GPU algorithm for the
two different graphics cards were compared and no differ-
ences were found. For this reason, the comparison between
CPU-hunt and the GPU algorithm is reported for one system
only.

lll.A.2. GPU versus reference CPU algorithm

Figure 5 shows a cumulative histogram of the RPL differ-
ence between the GPU and the reference CPU algorithm for
test geometry C using a resampling factor of 2. Due to dis-
cretization errors introduced by the look-up table, it was
found that the slice index is incidentally calculated incor-
rectly by the CPU algorithm. For this particular example in
0.1% of the volume, a deviation larger than 2.7 mm was
found (for geometries A and B a deviation larger than 4.4
X 10™* and 1.5 mm, respectively, was found in 0.1% of the
volume). As an illustration of the effect of discretization er-
rors in the calculation of the slice index, Fig. 6 shows a slice
of the absolute RPL difference map for geometry C, test case
II.

lll.B. Performance analysis

The timings of ray tracing for the different test cases are
presented in Tables V—VII. Although, the achieved speedup
is observed to be strongly dependent on the geometry tested
for, the GPU algorithm is always faster. The timings for dose
calculations when radiating while rotating the gantry over
20° in 1° steps are presented in Table VIII. The timings are

TABLE VI. Timing of the reference (multithreaded CPU) and the GPU ray
tracing algorithm on systems I and II for test geometry B. S denotes
speedup, GPU execution time relative to CPU execution time.

System I System 1I
CPU GPU GPU
Test case (s) (s) S(-) (s) S(-)
I 2.22 1.08 2.1 0.47 4.7
I 0.44 0.13 3.3 0.06 7.1
111 0.1 0.03 3.4 0.01 8.1
v 0.1 0.03 34 0.01 9.0

4101 de Greef et al.: GPU accelerated dose calculation

TABLE VII. Timing of the reference (multithreaded CPU) and the GPU ray
tracing algorithm on systems I and II for test geometry C. S denotes
speedup, GPU execution time relative to CPU execution time.

System I System II
CPU GPU GPU
Test case (s) (s) S(-) (s) S (=)
1 5.98 3.88 1.5 1.82 3.3
I 1.12 0.84 1.3 0.41 2.7
1 0.18 0.12 1.5 0.06 2.8
v 0.17 0.11 1.5 0.08 2.1
v 4.61 3.28 1.4 1.75 2.6

reported for resampling factors 1 and 2 for the multithreaded
CPU algorithm and the GPU algorithm timed on both sys-
tems I and II. The tested geometries are C and D. Averaged
over the 21 source positions, the times needed for a single
dose calculation with a resampling factor of 2 were found to
be 0.9 and 0.6 s, respectively.

IV. DISCUSSION AND CONCLUSIONS

The aim of this study was to investigate the possible ac-
celeration of the presently used ray tracing algorithm for ra-
diotherapy dose calculations using a GPU. Both accuracy
and execution time of the GPU algorithm were compared to
a CPU benchmark. It was shown that accurate ray tracing
can be performed, on average, six times faster than with the
multithreaded reference CPU algorithm.

The difference in radiological path length between the
CPU-hunt and the GPU algorithm was found to be smaller
than 0.1 mm, the precision with which the RPL is stored in
practice. The present differences can be explained by differ-
ences in accumulation of round-off errors. In the GPU algo-
rithm the values of « are calculated incrementally, whereas
for the CPU algorithm for all the planes of intersection, the
value of « is calculated independently using Egs. (7)—(9).

The look-up table introduces discretization errors that can
lead to a difference in RPL up to 7.5 mm (for test geometry
C). At a large angle of incidence (relative to the z direction)

TaBLE VIII. Timing of dose calculations for an arc of 21 source positions for
resampling factors of 1 and 2 and two test geometries. S denotes speedup,
GPU execution time relative to CPU execution time. A, is the in-plane
spacing relative to the original spacing. The starting angles were set to be 0°
and 45°, respectively.

System I System II
CPU GPU
Geometry A, (—) (s) (s) S (—) GPU (s) S (—)
C 1 97 90 1.1 64 1.5
2 32 18 1.8 18 1.8
D 1 314 59 54 51 6.2
2 55 15 3.7 11 4.8

Medical Physics, Vol. 36, No. 9, September 2009

4101

and high density contrast, the GPU algorithm is therefore
more accurate than the reference CPU algorithm.

These differences however are found in a marginal frac-
tion of the irradiated volume: A deviation larger than 2.7 mm
is found in only 0.1% of the volume (Fig. 5). Figure 6 shows
that discretization errors at the location of the body contour
are projected onto neighboring slices. Together with discreti-
zation errors at other high density contrast regions, this ex-
plains the found differences between the reference CPU and
the GPU algorithm. As shown, in case of irradiation with a
vertex field, the maximum error found was 0.5 mm. This is
consistent with the explanation for the deviation in the co-
planar cases since the angle of incidence is close to normal in
this particular case. In clinical practice, the differences will
even be less significant since the location of the differences
found will be dependent on the beam angle. Deviations in the
dose distribution will therefore be much smaller for a mul-
tiple beam plan than for a single beam.

The presented timings show that the GPU implementation
can speed up the multithreaded CPU ray tracing algorithm
considerably by up to a factor of 10. This speedup, however,
is observed to be strongly dependent on the geometry. The
speedup found for geometry C, the head-and-neck case, is
relatively small. For this geometry, a relatively large fraction
of voxels within the bounding box contains air and no trac-
ing needs to be done to these voxels. Threads are started,
however, for all voxels within the bounding box, ray tracing
is only performed when the density is unequal to zero. When
there are threads within a warp (a group of threads executed
physically in parallel) that are tracing and threads that are
idle, this effectively lowers the level of occupation of the
GPU and therefore reduces performance. This could possibly
be solved by compressing the grid by the removal of all
threads that do not have to do any work.

The time required for a complete single beam dose calcu-
lation at a resampling factor of 2 was measured to be
0.6-0.9 s, depending on the geometry. The reported speed-
ups for dose calculation are lower than the speedups reported
for ray tracing only. The speedups measured for geometry C
were 1.5 and 1.8 using resampling factors of 1 and 2, respec-
tively. For ray tracing alone, speedups of 3.3 and 2.7 were
measured. This can be explained by the fact the number of
voxels for which ray tracing is carried out is larger for the
GPU algorithm than that for the CPU algorithm since no
distinction is made between being in- and outside the “beam
volume.” Furthermore, although more than 50% of the dose
calculation time is made up by ray tracing, the remaining
calculation time is not influenced by the GPU acceleration
making the overall reduction relatively smaller.

It is inherently unknown which elements of the density
array will be accessed during ray tracing. This results in a
complex access pattern that is not consistent with the re-
quirements for fast parallel accessing of data."® The ray trac-
ing algorithm could possibly be optimized using texture
memory. Texture memory is read-only memory that is opti-
mized to acces grid data fast.!>1

Comparing the performance of the two different graphics
cards, it is found that the GTX 280 card is on average 2.16

4102 de Greef et al.: GPU accelerated dose calculation

times faster than the 8800 GTS card (minimum of 1.4, maxi-
mum of 2.66). The first benefits from a larger number of
processor cores (240 versus 96) and a higher theoretical
memory bandwidth (141.7 versus 64 Gbytes/s).

The developed GPU algorithm now enables dose calcula-
tions at a speed that will be experienced as real time for
conventional forward planning based on clinically relevant
datasets. In addition, there is no longer a dependency be-
tween execution time and field size. As mentioned in Sec. I
this can lead to a major reduction in the workload of radio-
therapy treatment planning. Moreover, the presented GPU
algorithm can be used to accelerate more advanced treatment
planning optimization techniques.lf5

ACKNOWLEDGMENTS

For this work, the source code of the PLATO planning
system was used within the framework of the AMC-
Nucletron (Veenendaal) treatment planning collaboration. Fi-
nancial support was given by the Dutch Cancer Society
(Grant No. UVA-2006-3484).

APPENDIX: GPU RAY TRACING ALGORITHM

Qeyrrent= Cmin {INitialization}

@y ext= ¥ (imin) {a values of potential next intersecting

planes}

Ay next™ ay(jmin)

Q7 next= az(kmin)

Initialize v, v,y {Linear Array indices}

while a e <1.0 do

lf ay,nexl< ax,next && ay,next< az,next then

Umia=(Qeurrent+ @y next) /2 {Ray intersects Y-plane}
= Ay next ~ Xeurrent

Aeyrrent = Xy next
@y next= @y next+ Ot {Potentially next Y-plane.}

update v
else if @, ;< @, pex then
Umia=(Qeurrent+ X nex) /2 {Ray intersects X-plane}

= Ay next™ Xeurrent

Aeyrrent = Xy next
@y pext= Xy next+ O, {Potentially next Z-plane.}

Medical Physics, Vol. 36, No. 9, September 2009

4102

update v
else

mia=(Aeyrrent+ @ next) /2 {Ray intersects Z-plane}

l: ax,next_ Xeyrrent

Qcurrent = Xz next

@, next= (Zptanel k1= 21)/ (z2—2;) {Potentially next
Z-plane}

update v

update k
end if

if p[vga] # 0.0 then
RPL=RPL+p[v4l!
end if
Uolg=0v
end while
RPL=d,,RPL

YElectronic mail: m.degreef@amc.uva.nl
'K. Otto, “Volumetric modulated arc therapy: IMRT in a single gantry
arc,” Med. Phys. 35, 310-317 (2008).

’C. Yu, “Intensity-modulated arc therapy with dynamic multileaf collima-
tion: An alternative to tomotherapy,” Phys. Med. Biol. 40, 1435-1449
(1995).

°E. Wong, J. Chen, and J. Greenland, “Intensity-modulated arc therapy
simplified,” Int. J. Radiat. Oncol., Biol., Phys. 53, 222-235 (2002).

‘T Mackie, T. Holmes, S. Swerdloff, P. Reckwerdt, J. Deasy, J. Yang, B.
Paliwal, and T. Kinsella, “Tomotherapy: A new concept for the delivery
of dynamic conformal radiotherapy,” Med. Phys. 20, 1709-1719 (1993).

°G. Grigorov, T. Kron, E. Wong, J. Chen, J. Sollazzo, and G. Rodrigues,
“Optimization of helical tomotherapy treatment plans for prostate can-
cer,” Phys. Med. Biol. 48, 1933-1943 (2003).

D. Jaffray, J. Siewerdsen, J. Wong, and A. Martinez, “Flat-panel cone-
beam computed tomography for image-guided radiation therapy,” Int. J.
Radiat. Oncol., Biol., Phys. 53, 1337-1349 (2002).

"R. Siddon, “Fast calculation of the exact radiological path for a three-
dimensional CT array,” Med. Phys. 12, 252-255 (1985).

SA. Bel, “Speed optimization of ray tracing for 3D dose calculation,”
Radiother. Oncol. 61, s38 (2001).

°J. Owens et al., “A survey of general-purpose computation on graphics
hardware,” Comput. Graph. Forum 26, 80-113 (2007).

YGPU Gems 2 edited by M. Pharr (Addison-Wesley Professional, Upper
Saddle River, NJ, 2005), p. 451.

"Brook GPU, http://graphics.stanford.edu/projects/brookgpu/.

12RapidMind, http://www.rapidmind.net/.

PNVIDIA CUDA Compute Unified Device Architecture Programming
Guide, NVIDIA Corporation, 1.1 edition (2007).

. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Reci-
pes in C, 2nd ed. (Cambridge University Press, Cambridge, 1992).

NVIDIA CUDA Compute Unified Device Architecture Programming
Guide, NVIDIA Corporation, 2.1 edition (2008).

http://dx.doi.org/10.1118/1.2818738
http://dx.doi.org/10.1088/0031-9155/40/9/004
http://dx.doi.org/10.1118/1.596958
http://dx.doi.org/10.1088/0031-9155/48/13/306
http://dx.doi.org/10.1016/S0360-3016(02)02884-5
http://dx.doi.org/10.1016/S0360-3016(02)02884-5
http://dx.doi.org/10.1118/1.595715
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x

