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Abstract—Mutual information has developed into an accurate measure
for rigid and affine monomodality and multimodality image registration.
The robustness of the measure is questionable, however. A possible reason
for this is the absence of spatial information in the measure. The present
paper proposes to include spatial information by combining mutual infor-
mation with a term based on the image gradient of the images to be regis-
tered. The gradient term not only seeks to align locations of high gradient
magnitude, but also aims for a similar orientation of the gradients at these
locations.

Results of combining both standard mutual information as well as a nor-
malized measure are presented for rigid registration of three-dimensional
clinical images [magnetic resonance (MR), computed tomography (CT),
and positron emission tomography (PET)]. The results indicate that the
combined measures yield a better registration function does mutual infor-
mation or normalized mutual information per se. The registration functions
are less sensitive to low sampling resolution, do not contain incorrect global
maxima that are sometimes found in the mutual information function, and
interpolation-induced local minima can be reduced. These characteristics
yield the promise of more robust registration measures. The accuracy of the
combined measures is similar to that of mutual information-based methods.

Index Terms—Image gradients, image registration, image structure,
multimodal images, mutual information.

I. INTRODUCTION

Of the multitude of image registration measures that have been pro-
posed over the years (see [1] for an extensive survey), mutual infor-
mation is currently one of the most intensively researched measures.
This attention is a logical consequence of both the favorable character-
istics of the measure and the good registration results reported. Mutual
information is an automatic, intensity-based measure, which does not
require the definition of landmarks or features such as surfaces and
that can be applied in retrospect. Furthermore, it is one of the few in-
tensity-based measures that is well suited to registration of multimodal
images. Unlike measures based on correlation of gray values or dif-
ferences of gray values, mutual information does not assume a linear
relationship among the gray values in the images.

Several independent studies have shown the suitability of mutual
information as a registration measure for multimodal medical images
[2]–[6]. Perhaps the best illustration of the performance of mutual in-
formation can be found in the Retrospective Registration Evaluation
Project (RREP), an international study comparing the accuracy of 16
registration methods against a screw marker gold standard [7]. Regis-
tration of computed tomography (CT) and positron emission tomog-
raphy (PET) brain images to magnetic resonance (MR) images was
studied, with the experiments for each method being performed by the
research group proposing that particular method. From the study, it
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can be concluded that the mutual information-based methods in the
study were among the most accurate methods, achieving an accuracy
approaching that of the screw marker-based gold standard.

However, mutual information is not a panacean method. Despite the
general promising results, mutual information-based matching can re-
sult in misregistration [8]–[11]. The mutual information registration
function can be ill-defined, containing local maxima. This can occur,
for example, when the images are of low resolution, when the images
contain little information, when there is only a small region of overlap
or as a result of interpolation methods. Because it is evident that mutual
informationcanregister images well in general, but still fails occasion-
ally, research into improving the method is ongoing. Improvements of
different aspects of the method have been suggested, such as multires-
olution methods [8], a different entropy measure [9], invariance with
respect to overlap [11], and “higher-order” mutual information, using
co-occurrence matrices of neighboring voxels’ intensities [12].

In this paper, we propose an adaptation of the mutual information
measure to include spatial information that is contained in each of the
images separately. Mutual information does not contain this spatial in-
formation (except in the interpolation of gray values). Setting aside in-
terpolation, a random reshuffling of the image voxels (identical for both
images) yields the same mutual information value as for the original
images. We combine mutual information with a gradient measure to
provide spatial information. Image gradients by themselves have been
shown to be useful registration criteria [10], [13].

II. M ETHOD

A. Mutual Information

The mutual information of two images is a combination of the en-
tropy values of the images, both separately and jointly. One interpre-
tation of entropy is as a measure of dispersion of a probability dis-
tribution. A distribution with only a few large probabilities has a low
entropy value; the maximum entropy value is reached for a uniform
distribution. The entropy of an image can be computed by estimating
the probability distribution of the image intensities.

In this paper, we use the Shannon measure of entropy,
�

p2P
p log p for a probability distributionP . The joint probability

distribution of two images is estimated by calculating a normalized
joint histogram of the gray values. The marginal distributions are
obtained by summing over the rows, respectively, the columns, of the
joint histogram.

The definition of the mutual informationI of two imagesA and
B combines the marginal and joint entropies of the images in the fol-
lowing manner:

I(A;B) = H(A) +H(B)�H(A;B):

Here,H(A) andH(B) denote the separate entropy values ofA and
B, respectively.H(A;B) is the joint entropy, i.e., the entropy of the
joint probability distribution of the image intensities. Correct regis-
tration of the images is assumed to be equivalent to maximization of
the mutual information of the images. This implies a balance between
minimization of the joint entropy and maximization of the marginal en-
tropies. The joint entropy is minimal when the joint distribution is min-
imally dispersed, i.e., when it is crisp. This corresponds to registration,
because any misalignment of the images will both introduce new com-
binations of gray values and decrease the probabilities of the “correct”

0278–0062/00$10.00 © 2000 IEEE

Authorized licensed use limited to: Johns Hopkins University. Downloaded on November 4, 2009 at 09:55 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 8, AUGUST 2000 810

combinations. The overall result is a more dispersed joint probability
distribution.

Recently, it was shown that the mutual information measure is sensi-
tive to the amount of overlap between the images andnormalizedmu-
tual information measures were introduced to overcome this problem.
Examples of such measures are the normalized mutual information in-
troduced by Studholmeet al. [11]

Y (A;B) =
H(A) +H(B)

H(A;B)

and the entropy correlation coefficient used by Maeset al. [3]

ECC(A;B) =
2I(A;B)

H(A) +H(B)
:

These two measures have a one-to-one correspondence, and we will
therefore only useY (A;B) in this paper.

B. Incorporating Gradient Information

Image locations with a strong gradient are assumed to denote a tran-
sition of tissues, which are locations of high information value. The
gradient is computed on a certain spatial scale. We have extended mu-
tual information measures (both standard and normalized) to include
spatial information that is present in each of the images. This extension
is accomplished by multiplying the mutual information with a gradient
term. The gradient term is based not only on the magnitude of the gra-
dients, but also on the orientation of the gradients.

Simply applying mutual information to gradient images would seem
a logical solution to incorporating spatial information, were it not that
the registration function would probably have a narrow attraction range
and that a lot of information from the gray value images is discarded.
We therefore propose a combination of mutual information and gra-
dient information.

The gradient vector is computed for each sample pointx = fx1;
x2; x3g in one image and its corresponding point in the other image,
x
0, which is found by geometric transformation ofx. The three partial

derivatives that together form the gradient vector are calculated by con-
volving the image with the appropriate first derivatives of a Gaussian
kernel of scale�. The angle�

x;x (�) between the gradient vectors is
defined by

�
x;x (�) = arccos

rx(�) � rx0(�)

jrx(�)j jrx0(�)j
;

with rx(�) denoting the gradient vector at pointx of scale� andj � j
denoting magnitude.

For multimodal images, the different imaging techniques can lead
to a tissue having different intensities in either image. As a result, the
gradients of the images can point in different directions. However, be-
cause the images fundamentally depict the same anatomical structures,
gradients in two multimodal images—at least in principle—will have
the same orientation and either identical or opposing directions. Con-
sequently, we use the following weighting functionw, which favors
both very small angles and angles that are approximately equal to�

(see Fig. 1):

w(�) =
cos(2�) + 1

2
:

Furthermore, the different imaging processes of different modalities
imply that multimodal images do not necessarily depict the same tissue
transitions. Hence, strong gradients that emerge with a certain imaging
technique may be absent or less prominent with another technique. Be-
cause we are only interested in including strong gradients that appear
in both images, the angle function is multiplied by the minimum of

Fig. 1. Weighting function for gradient angles.

Fig. 2. Examples of the individual contributions of voxels to the gradient
functionG for, respectively, MR-T1 and MR-T2, MR-T1 and CT, and MR-T1
and PET. The slices shown are extracted from three-dimensional images. The
scalarG, with which mutual information is multiplied, is found by summing
over all voxels.

the gradient magnitudes. Summation of the resulting product for all
samples gives us the gradient term with which we multiply the mu-
tual information measure. Multiplication was preferred over addition,
because addition of the terms would require both terms to be normal-
ized. Some examples of the gradient measure (before summation) for
different combinations of multimodal images can be found in Fig. 2.
Tissue transitions that are depicted in both modalities are emphasized.

The proposed registration measure becomes

Inew(A;B) = G(A;B)I(A;B)

with

G(A;B) =
(x;x )2(A \ B)

w(�
x;x (�))min(jrx(�)j; jrx0(�)j):

Similarly, the combination of normalized mutual information and
gradient information is defined as

Ynew(A;B) = G(A;B)Y (A;B):

C. Optimization

Optimization of the registration function is done using Powell’s
method [14]. This method repeatedly iterates the dimensions of the
search space, performing one-dimensional optimizations for each
dimension, until convergence is reached.

Because we rigidly register image volumes, the search space is six-
dimensional, i.e., three rotations and three translations.

III. RESULTS

To show the performance of our proposed measure, we consider a
variety of registration problems: MR to MR, MR to CT, and MR to
PET. The images involved are those used in the aforementioned RREP
comparison study. This set consists of pairs of CT and MR (PD, T1, and
T2) images of seven patients and pairs of PET and MR (PD, T1, and
T2) of seven patients. Also included arerectified MR sets, corrected
for scaling and intensity inhomogeneity.

In Section III-A, we will highlight some typical registration func-
tions for different registration problems, comparing the behavior for
mutual information, normalized mutual information, and the combina-
tion measures. In Section III-B, we evaluate the accuracy of the com-
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Fig. 3. Registration functions for MR-T1 and T2 matching. From top to bottom: (i) rotation around an in-plane axis, (ii)idem, images subsampled by a factor of
three in each dimension, and (iii) translation along an in-plane axis.

bination measures for registration of MR/CT and MR/PET image pairs
by comparison to bone marker-based solutions.

In the computation of the gradients, our choice of scale was moti-
vated by past research on edge-based measures for image registration
[13], which demonstrated the best performance of edge-based mea-
sures at smaller scales. Searching for a tradeoff between small scale
and image resolution, we have opted for a� of 1.5 mm for all images.

A. Registration Functions

1) MR-T1 and MR-T2:Registration of MR-T1 and MR-T2
weighted images is probably the best test case for a gradient-based
method. Although the images are multimodal in the sense that different
tissue characteristics are imaged, the structure in the images is similar
and we would expect to find gradients at corresponding locations.
Fig. 3 contains registration functions for matching of an MR-T1 and
an MR-T2 image, using mutual information(I), normalized mutual
information(Y ), and both proposed combination measures(Inew and
Ynew). We assume no transformation is required to align the images.
The top row shows the functions for rotation around an in-plane
axis. Clearly, the original mutual information function can hardly be
improved on, and the functions for the combined measures are nearly
identical. The normalized mutual information function has a local
minimum at the position of correct alignment, which is probably a
result of interpolation [15].

As mutual information is based on estimating probability dis-
tributions, the registration function is generally less smooth when
the number of samples is small, as, for example, in multiresolution
methods. In the middle row of Fig. 3, we show the registration
functions for rotation around an in-plane axis after the images have
been equidistantly subsampled by a factor of three in each dimension.
The smoothness of the mutual information function has significantly
decreased; worse yet, the optimum has moved. In the normalized
mutual information function, the local minimum has become more
pronounced and the function is less smooth. In contrast, the registration
functions for the combined measures remain smooth and the optimum
did not shift. Although the smoothness of the mutual information
registration functions can be improved on to some extent by more
advanced downscaling methods, these examples illustrate that the
combined measures are less sensitive to the number of samples.

In the bottom row of Fig. 3, the behavior of the measures for trans-
lation in the in-plane direction is shown. The local minima in the mu-
tual information and normalized mutual information functions are a

result of interpolation. The interpolation method used (linear interpola-
tion) influences the entropy measures by blurring noise and other small
structures. Noise increases the dispersion of a probability distribution
and, hence, its entropy. The local minima in the function correspond
to translations that align the image grids (the images have equal voxel
sizes). For such translations, interpolation is not applied, resulting in a
higher joint entropy because of the presence of noise and a decreased
mutual information value (see [15] for a more detailed explanation). In
the registration functions of the combined measures, the artifacts are
nearly eliminated.

2) MR-T1 and CT: Although MR images depict different anatom-
ical details than CT images, there generally are corresponding
structures—and, hence, corresponding gradients—in both images.
Fig. 4 shows some examples of MR-CT registration functions, around
the marker-based gold standard solution. Again, we first show an ex-
ample of a well-defined mutual information function (rotation around
an in-plane axis, top row) and find that the function is not significantly
altered by the inclusion of gradient information. When subsampling
the images by a factor of three (middle row), the mutual information
function deteriorates rapidly, the normalized mutual information
function is less affected, though it also loses smoothness, while the
functions for the combined measures are virtually unchanged. The
final example plots the measures as a function of translation in the
slice direction. The images have an equal slice thickness, which
explains the occurrence of artifacts.

3) MR-T1 and PET:Registration of MR and PET images is a con-
siderably more difficult problem than the previous two, both because
of the fewer similarities between the image contents and because of
the lower intrinsic resolution of PET images. Experience has taught
that mutual information-based matching of these images can often re-
sult in misregistration. Problems occur usually not because of a lack of
smoothness, but because the function is ill-defined, having prominent
maxima away from the true optimum. Examples of ill-defined mutual
information functions can be found in Fig. 5, top two rows. The figure
shows registration functions of an MR-T1 and a PET image for which
registration with both mutual information and normalized mutual infor-
mation resulted in mismatches. The zero position in the functions pre-
sented corresponds to the marker-based solution. From top to bottom,
registration functions are given for each of the six rigid transformation
parameters.

The cause of the misregistrations is clearly visibly in the top two
rows: for both out-of-plane rotations, the standard and normalized
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Fig. 4. Registration functions for MR-T1 and CT matching. From top to bottom: (i) rotation around an in-plane axis, (ii)idem, images subsampled by a factor of
three in each dimension, and (iii) translation in slice direction.

Fig. 5. Registration functions for MR-T1 and PET matching.

mutual information functions are ill defined (a result of large slice
thickness and a small number of slices). By attempting several starting
positions, a reasonable match could be found for these images, because
the functions contain small local maxima in the vicinity of the true
optimum. However, it is obvious that optimization of such functions
will not be robust. By including gradient information, the registration

functions for out-of-plane rotation are vastly improved (rightmost two
columns). The functions now show a global optimum close to the
marker-based solution.

In the third row (in-plane rotation), the position of the global op-
timum for the combined measures is closer to the gold standard solu-
tion compared to the global optima of standard and normalized mutual
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TABLE I
REGISTRATION RESULTS FORMRI AND CT IMAGE PAIRS (IN mm)

information. The registration functions for in-plane translations (rows
four and five) are well defined for all measures. Interpolation-induced
local minima are found in the registration functions for translation in
the slice direction (bottom row), since the slice thicknesses of the im-
ages have a common factor. The inclusion of gradient information re-
duces the artefacts, as can be seen in the rightmost two functions.

B. Accuracy

The accuracy of the proposed measures has been tested by compar-
ison of the registration results against a marker-based gold standard.
Each pair of either CT or PET and MR (PD, T1 and T2, both recti-
fied and nonrectified) from the RREP study was registered using the
four measures discussed in this paper. Bone marker-based solutions
were available for these registration cases. Registration errors between
a transformation and the gold standard were computed at the centers of
several volumes of interest in the data sets, as in the RREP study (see
[7] for more detail).

To minimize the dependence of the results on the optimization
method, the starting position of all registration experiments was the
marker-based gold standard transformation. Tables I and II summarize
the registration results for all four measures. The median error,
maximum error, and number of data sets are given.1

Statistical testing of the median errors (two-tailed paired Studentt

test,p = 0:05) found no significant difference in the results of the mu-
tual information measures versus the corresponding combination mea-
sures. Neither when the significance tests were performed on all data
sets, nor when the results were divided into four categories (by CT/PET,
rectification/no rectification).

Registration using standard mutual information resulted in two mis-
registrations, a case of CT-T2 and a case of PET-T1, where a result was
considered a mismatch when the average error over the volumes of in-
terest was larger than the largest voxel dimension (4 mm for CT and 8
mm for PET). Normalized mutual information failed once (PET-T1).
The corresponding maximum errors are an indication of the extent of
the misregistration. The combined measures yielded satisfactory results
in all cases.

IV. DISCUSSION

We have proposed the adaptation of mutual information measures,
by incorporating spatial information. The measure combines either
standard or normalized mutual information with gradient information.
The essence of the gradient information is that, at registration, loca-
tions with a large gradient magnitude should be aligned, but also that
the orientation of the gradients at those locations should be similar.

The results presented in this study indicate that the combined mea-
sures yield registration functions outperforming both the standard mu-
tual information function with respect to smoothness and attraction
basin as well as a normalized mutual information measure. The func-
tions of the combined measures are better defined, containing fewer

1Please note that these errors are not directly comparable to those of other
methods, because the gold standard transformation was used as the starting po-
sition.

TABLE II
REGISTRATION RESULTS FORMRI AND PET IMAGE PAIRS (IN mm)

erroneous maxima and leading to the global maximum from larger ini-
tial misregistrations. The measures perform better for low-resolution
images and decrease interpolation-induced local minima.

In cases in which standard mutual information performs well, the
registration functions of the combined measures are similar and the
global optimum does not alter significantly.

The accuracy of the combined measures was shown to be similar
to that of standard and normalized mutual information. Registration
using the combined measures is likely to be more robust because of
the better defined registration functions. No distinct differences were
found between combined measures based on standard or normalized
mutual information.

Several issues of the method can be improved on or should be inves-
tigated further. The robustness of the combined measures should be re-
searched more extensively. The robustness of standard and normalized
mutual information was studied by Studholmeet al.[11], showing poor
robustness for mutual information and good performance for normal-
ized mutual information. However, wehaveencountered a mismatch
and ill-defined registration functions for normalized mutual informa-
tion (only for the nonrectified MR images, which were not included in
Studholme’s study). Another important topic is the dependence of the
method on the scaling parameter in the gradient computation. Directly
linked is the matter of differences in intrinsic resolution. PET images
have a significantly lower intrinsic resolution than MR images, and it is
possible the method can be improved on by taking this difference into
account.
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