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Ready availability has prompted the use of computed tomography (CT) data in various
applications in radiation therapy. For example, some radiation treatment planning systems now
utilize CT data in heterogeneous dose calculation algorithms. In radiotherapy imaging
applications, CT data are projected onto specified planes, thus producing “radiographs,” which
are compared with simulator radiographs to assist in proper patient positioning and delineation of
target volumes. All these applications share the common geometric problem of evaluating the
radiological path through the CT array. Due to the complexity of the three-dimensional geometry
and the enormous amount of CT data, the exact evaluation of the radiological path has proven to
be a time consuming and difficult problem. This paper identifies the inefficient aspect of the
traditional exact evaluation of the radiological path as that of treating the CT data as individual
voxels. Rather than individual voxels, a new exact algorithm is presented that considers the CT
data as consisting of the intersection volumes of three orthogonal sets of equally spaced, parallel
planes. For a three-dimensional CT array of N ® voxels, the new exact algorithm scales with 3N,
the number of planes, rather than N, the number of voxels. Coded in FORTRAN-77ona VAX 11/
780 with a floating point option, the algorithm requires approximately 5 ms to calculate an

average radiological path in a 100’ voxel array.
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INTRODUCTION

In radiation therapy applications, computer tomography
(CT) data are utilized in various dose calculation and imag-
ing algorithms. For example, some radiation treatment plan-
ning systems now utilize two-dimensional CT data for pixel-
based heterogeneous dose calculations. Other systems
forward project three-dimensional CT data onto specified
planes, thus forming “radiographs,” which are compared
with simulator radiographs to assist in proper patient posi-
tioning and delineation of target volumes. All such applica-
tions, whether in inhomogeneity calculations or imaging ap-
plications, essentially reduce to the same geometric problem:
that of calculating the radiological path for a specified ray
through the CT array.

Although very simple in principle, elaborate computer al-
gorithms and a significant amount of computer time is re-
quired to evaluate the exact radiological path. The amount
of detail involved was recently emphasized by Harauz and
Ottensmeyer,' who stated that even for the two-dimensional
case, their algorithm for calculating the exact radiological
path grew more and more unwieldy and time consuming,
while remaining unreliable. For three dimensions, they con-
cluded that determining the exact radiological path is not
viable. This paper describes an exact, efficient, and reliable
algorithm for calculating the radiological path through a
three-dimensional CT array.

Denoting a particular voxel density as p(/,j,k) and the
length contained by that voxel as / (i, j,k ), the radiological
path may be written as
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Direct evaluation of Eq. (1) entails an algorithm which scales
with the number of terms in the sums, that is, the number of
voxels in the CT array. The following describes an algorithm
that scales with the sum of linear dimensions of the CT array.

METHOD

Rather than independent elements, the voxels are consid-
ered as the intersection volumes of orthogonal sets of equally
spaced, parallel planes. Without loss of generality, Fig. 1
illustrates the two-dimensional case, where pixels are con-
sidered as the intersection areas of orthogonal sets of equally
spaced, parallel lines. The intersections of the ray with the
lines are calculated, rather than intersections of the ray with
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FIG. 1. The pixels of the CT array (left) may be considered as the intersection
areas of orthogonal sets of equally spaced, parallel lines (right). The intersec-
tions of the ray with the pixels are a subset of the intersections of the ray with
the lines. The intersections of the ray with the lines are given by two equally
spaced sets: one set for the horizontal lines (filled circles) and one set for the
vertical lines (open circles). The generalization to a three-dimensional CT
array is straightforward.
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the individual pixels. Determining the intersections of the
ray with the equally spaced, parallel lines is a particularly
simple problem. As the lines are equally spaced, it is only
necessary to determine the first intersection and generate all
the others by recursion. As shown on the right illustration of
Fig. 1, the intersections consist of two sets, one set for the
intersections with the horizontal lines (closed circles) and
one set for the intersections with the vertical lines (open cir-
cles). Comparing the left and right illustrations of Fig. 1, it is
clear that the intersections of the ray with the pixels is a
subset of the intersections with the lines. Identifying that
subset allows the radiological path to be determined. The
extension to the three-dimensional CT array is straightfor-
ward.

The ray from point 1 to point 2 may be represented para-
metrically as

X(@) =X, +alX, — X)),
Yie)=Y, +alY,— Y, (2)
Ze)=Z,+alZ,— Z)),

where the parameter « is zero at point 1 and unity at point 2.
The intersections of the ray with the sides of the CT array are
shown in Fig. 2. If both points 1 and 2 are outside the array
[Fig. 2(a)], then the parametric values corresponding to the
two intersection points of the ray with the sides are given by
a.;., and a,,,. All intersections of the ray with individual
planes must have parametric values which lie in the range
(@ min s®max )- FOr the case illustrated in Fig. 2(b), where point
1 is inside the array, the value of a,;, is zero. Likewise, for
Fig. 2(c), if point 2 is inside, then ¢, is one. For both points
1 and 2 inside the array [Fig. 2(d)], then &, is zeroand o,
is one. The solution to the intersection of the ray with the CT
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Fi1G. 2. The quantities a,,;, and a,,,, define the allowed range of parametric
values for the intersections of the ray with the sides of the CT array: (a) both
1 and 2 outside the array, (b} 1 inside and 2 outside, (¢} 1 outside and 2 inside,
and (d) 1 inside and 2 inside.
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voxels follows immediately: Determine the parametric inter-
section values, in the range (@, ,@m.y )» Of the ray with each
orthogonal set of equally spaced, parallel planes. Merge the
three sets of parametric values into one set; for example,
merging of the sets (1,4,7), (2,5,8), and (3,6,9) results in the
merged set (1,2,3,4,5,6,7,8,9). The length of the ray con-
tained by a particular voxel, in units of the ray length, is
simply the difference between two adjacent parametric val-
ues in the merged set. For each voxel intersection length, the
corresponding voxel indices are obtained, and the products
of the length and density are summed over all intersections
to yield the radiological path. A more detailed description of
the algorithm is given in the following section.

ALGORITHM

For a CT array of (N, — 1, N, — 1, N, — 1) voxels, the
orthogonal sets of equally spaced, parallel planes may be
written as

Xplane(i) = Xplanc(l) + (l - l)dx (l = 1’---,Nx)’
Yplane(j) = Yplane(l) + (.] - l)dy (.]= 1!"‘!Ny)’ (3)
Zplane(k) - Zplane(l) + (k - l)dz (k = 1’--',Nz);

whered, , d,, and d, are the distances between the x, y, and z
planes, respectively. The quantities d,, d,, and d, are also
the lengths of the sides of the voxel. The parametric values
& and a,,, are obtained by intersecting the ray with the
sides of the CT array. From Egs. (2) and (3), the parametric
values corresponding to the sides are given by the following:

If (X, — X,)#0,
@, (1) = [Xoune (1) — X1]/(X; — X)),

(4)
@ (V) = [Xpane V) — X, ]/(X; — X)),

with similar expressions for a,(1), ¢, (N, ), a.(1), and . (¥,).
If the denominator (X, — X,) in Eq. (4) is equal to zero, then
the ray is perpendicular to the x axis, and the corresponding
values of @, are undefined, and similarly fora, and «, . If the
a,, a,, or a, values are undefined, then those values are
simply excluded in all the following discussion.

In terms of the parametric values given above, the quanti-
ties a;, and «a,,, are given by

Qi = max{0,min[a,(1),a,(N,)],
min[a,(1),a,(N,)], min[e,(1),a,(N,)]},
(5)

QAo = min{l,max[a,(1),a,(N,)],

max[a,(1),a,(,)],max[a,(1)a,(V,)]},
where the functions min and max select from their argument
list, the minimum and maximum terms, respectively. If z,,,,
is less than or equal to a,,;, , then the ray does not intersect
the CT array.

From all intersected planes, there are only certain inter-
sected planes which will have parametric values in the range
(X min »¥max ) From Egs. (2), (3), and (5), the range of indices
(Fsin Pmax )s (Jemins Jmax s 304 (KpinsKmax )y corresponding to
these particular planes, are given by the following: If
(X2 — X,)>0,
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'min =N _[ lane(N )_ min(XZ_ 1)_X1]/ x9

lmax = 1 + [Xl + amax(X Xl) plane(l)]/ (6)
lf(X2—X,)<O

lmm = [ lane(N max(XZ_Xl)_Xl]/dx’

Imax = 1 + [Xl +amin(X2 1) plane )]/dx’

with similar expressions for j ., juax> Kmins a0d &, .

For a given range of indices (i, /max)s (JminsJmax)» and
(K min K max )» the sets parametric values {a, }, {@, },and {q, },
corresponding to the intersections of the ray with the planes

are given by the following: If (X, — X} > 0,
{ax} = {ax(imin)""’ax(imax)};
(7)
if (X, — X,) <0,
[ax} = {ax(imax)"“9ax(imin)}’
where
a (l)_ [ Iane l) Xl]/(XZ_Xl)

=a,li— 1)+ [d./(X, — X})],
with similar expressions for {a, ] and {e, ].

Asgiven by Eq. (7), thesets {a, }, {a, },and {a,} are each
arranged in ascending order. Each term in each set corre-
sponds to an intersection of the ray with a particular plane.
The intersections of the ray with the voxels are found by
merging the sets {a, ], {a, ], and {a, ] into one set. To in-
clude the case where one or both of the end points of the ray
may be inside the CT array, the parametric values «,,;, and
Q. are appended to the merged parametric sets. The terms
Qpnins Amax»> and the merged sets {a, }, {a,}, and {a,} are
denoted by the set {a}:

{a} = {amn,merge[ {a,},{a,},{a, ] ] @mu}
= {a(0),...,a(n)}, (8)
where the last term has an index n given by
1= (inax — fmin + 1) + (Jmex —Jmin + 1)
+ Kmax — ki + 1) + 1. ©)
Two adjacent terms in the set { @} refer to the intersections

of the ray with a particular voxel. For two intersections m
and m — 1, the voxel intersection length / (m) is given by

(m=1,...,n), (10)

where the quantity d, , is the distance from point 1 to point
2,

dy,= [(Xz

l(m) =d, la(m) —a(m — 1)]

—X )P+ (L - Y+ (2, -Z)P12 (1)

The voxel [i(m), jim),k (m)], which corresponds to intersec-
tions m and m — 1, is that which contains the midpoint of
the two intersections. From Egs. (2), (3), and (5), the indices
[i(m)}, jim),k (m)] are given by
im) =1+ [X;+an X, —X,)—
Jm) =1+ [Y,+ aualY, — Y,) —
kim)=1+[Z, + amylZ, — Z;) —
where a,,;4 is given by
Ui = [a(m) + alm — 1)1/2. (13)

plane(l)]/dx9
plane(l)]/ (12)
plane(l ]/dz’
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The radiological path d [Eq. (1)] may now be written as

m=n

d= 3 [(m)p[im),jim)k(m)]

m=1

m=n

=d,, z [a(m) —

m=1

aim — 1)] pli(m), jim),k (m)],

(14)
where 7 is given by Eq. (9), / (m) is given by Eq. (10), and the
indices [i{m), jim),k (m)] are given by Eq. (12).

DISCUSSION

The new radiological path algorithm is summarized in the
block diagram in Fig. 3. For a typical problem, the relative
amount of computation time required in each section of the
algorithm is given by the respective percentages to the right
of each descriptive block. The new algorithm is coded in
FORTRAN-77 and is run on a VAX 11/780 with a floating
point option. At present, no attempt has been made to opti-
mize the code in machine language or adapt the algorithm to
run on an array processor. Rather, the algorithm has been
coded in the straightforward manner described in the text.

The performance of the algorithm is illustrated for a typi-
cal dose calculation problem shown in Fig. 4. The CT array
is taken to be a cube with N * voxels. Point 1 of the ray path is
centered above the array. An internal calculation grid of 21°
points, corresponding to point 2 of the ray path, is distribut-
ed uniformly within the CT array. The mean calculation
time per point, ¢, is obtained as a function of the array size ¥
(Fig. 5). The mean time ¢ is the total time to calculate the

START
CALCULATE RANGE OF PARAMETRIC VALUES 29
{mins @max) °
CALCULATE RANGE OF INDICES 39
limins imax) (mins max (Kmins kmax) °
A
CALCULATE PARAMETRIC SETS 16%
{ox) {ay} {o7} °
/
MERGE SETS TO FORM SET {a} 26%
CALCULATE VOXEL LENGTHS 12%
CALCULATE VOXEL INDICES 4M%
STOP

F1G. 3. Block diagram of the new algorithm to calculate the radiological
path for a three-dimensional CT array. The percentages indicate the relative
amount of computational time spent in various portions of the algorithm.
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FI1G. 4. The performance of the new algorithm is illustrated for the problem
of a CT array of NV * voxels. Point 1 of the ray path is centered above the CT
array. A calculation grid of 213 points, corresponding to point 2 of the ray
path, is uniformly distributed within the CT array.

radiological path at all 21° points divided by the number of
points. As illustrated in Fig. 5, the new algorithm scales with
N for a CT array of N* voxels.

CONCLUSION

An algorithm has been developed which evaluates the ex-
act radiological path of a ray through a three-dimensional
CT array. Rather than consider individual voxels of the CT
array, the algorithm calculates the intersections of the ray
with orthogonal sets of equally spaced, parallel planes. For
an array of N * voxels, considering the planes rather than the

Medical Physics, Vol. 12, No. 2, Mar/Apr 1985

0 20 40 60 80 100

FIG. 5. The mean computational time per point, ¢, for the example in Fig. 4
asa function of the array size N. Note that the new algorithm scales with the
linear size N and not the number of voxels N 3.

voxels allows the algorithm to scale with the number of
planes (proportional to ¥ ), rather than the number of voxels
(proportional to NV ). The intersections are described as para-
metric values along the ray. The intersections of the ray with
the voxels are obtained as a subset of the intersections of the
ray with the planes. For each voxel intersection length, the
corresponding voxel indices are obtained and the products of
the intersected length and particular voxel density are
summed over all intersections to yield the radiological path.
The algorithm is exact, efficient, reliable, and particularly
straightforward to implement in computer code.
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