Seminar on Statistical Anatomic Models, Registration, and Reconstruction 2011/1/27

GPU-accelerated Registration/Reconstruction Toolkit and its Application to 2D/3D registration

Yoshito Otake

Acknowledgements

<u>Advisers</u>

- Russell H. Taylor
- Mehran Armand

Collaborators

JHU/CISST

- Ehsan Basafa
- Blake Lucas
- Wen Liu
- Ben X. Kang

I-STAR lab

- J. Web Stayman
- Wojtek Zbijewski
- Sebastian Schafer
- Junghoon Lee

- Peter Kazanzides
- Jeffrey H. Siewerdsen

APL

- Robert Armiger
- Michael D. Kutzer
- Ryan Murphy

Bayview

- Simon C Mears
- Stephen Belkoff

- Ali Uneri
- Sureerat Reaungamornrat
- Sajendra Nithiananthan
- Daniel Mirota

Outline

- 1. Development of the GPU reg./recon. toolkit
 - Motivation
 - Purpose
 - Implementation detail
 - Example applications
 - Future work
- 2. An application of the toolkit: Intensity-based rigid 2D/3D registration
 - Implementation and experimental evaluation

Motivations

- Many components of registration/reconstruction researches overlap and usually computationally intensive.
 - e.g. DRR generation (forward projection), back projection, resampling, etc.
- Why don't we implement those components on GPU with an unified interface?
- Matlab-friendliness is important for research
- Shared library, cross-platform, intuitive API, modular design, multi-GPU support are preferable...

Cited from NVIDIA CUDA Programming Guide

Purpose

 To develop a cross-platform shared toolkit with GPU-acceleration, which helps registration/reconstruction researches.

Software architecture

Overview of the Toolkit

- One shared library (named "FBProjector.dll")
- Almost all code in the library are implemented from scratch
 - Exceptions
 - FDK filtering collaboration with Dr. Sebastian Schafer
 - MI computation on GPU open source (written by Ramtin Shams)
- Source files and sample code
 - <u>https://svn.lcsr.jhu.edu/yotake2/C++/CUDA_Programs/FBProjectorDII</u>
- Dependency
 - CUDA Toolkit (<u>http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html</u>)
- Supported platform
 - Developed and tested mainly on Windows, but it should work on other platform, probably...
 - A little more details are on I-STAR wiki
 - <u>https://trac.lcsr.jhu.edu/istar/wiki/Projectors</u>

Key components in the Toolkit

- Already implemented on the GPU
 - Forward projector (DRR generator)
 - Back projector (Voxel-driven & Ray-driven)
 - Resampler / Interpolator
 - Similarity measure computation (not optimized yet)
 - Mutual information (MI), Normalized mutual information (NMI), Gradient information (GI), Gradient correlation (GC), Normalized cross correlation (NCC), Mean square distance (MSD).
 - FDK filtering
- To be implemented... (currently Matlab is used)
 - Optimizer

Application scenarios

Application scenarios

	2D/3D rigid reg.	3D/3D rigid reg.	3D/3D non- rigid reg.	Stat. recon.	FDK recon.
Input	2D x <i>N</i> (fixed) + 3D (moving)	3D (fixed) + 3D (moving)	3D (fixed) + 3D (moving)	2D x <i>N</i>	2D x <i>N</i>
Optimization process	Forward project	Resample	Apply <i>D</i> (resample)	Forward project	
	Compute similarity measure	Compute similarity measure	Compute gradient	Compute (curvature?)	FDK weighting & filtering
				Back project	Back project
	Update T	Update T	Update D	Update V	
Output	Т	Т	D	V	V

N: Number of projection images

T: Rigid transformation

- V: Volume (3D)
- D: Deformation field

Example MATLAB interface

DRRs = reshape(get(imageBuffer.Data, 'value'), [imageSize numProj]); generation

Pixel/voxel order used in the library

For volume (3D)

For projection (2D)

Example C/C++ interface

// Initialize dll instance
FBProjectorInstance fbProjector;
CreateFBProjectorInstance(&fbProjector, WIDTH, HEIGHT, false, err_str);
SetWindowLevel(fbProjector, WINDOW, LEVEL, err_str);
SetStepSize(fbProjector, 1.0, err_str);
SetIsSiddon(fbProjector, true, err_str);

// set volume data
float *volume; // see the previous slide for the voxel order
InitializeInputData_CT(fbProjector, volume, w, h, d, 1, err_str);
SetVolumeInfo(fbProjector, w, h, d, vox_w, vox_h, vox_d, err_str);

// X-ray projection geometry setting
InitializeProjectionParametersArray(fbProjector, NUM_PROJECTION, err_str);
ProjectionParameters_cameraOriented projectionGeometry;
for(int i=0;i<NUM_PROJECTION;i++){</pre>

// Geometry setting on projectionGeometry

SetProjectionParameter_cameraOriented(fbProjector, i, projectionGeometry, err_str);

// Compute DRR PackedDynamicF

}

PackedDynamicFloatMatrix DRRs; InitializePackedDynamicFloatMatrix(&DRRs); ForwardProjection(fbProjector, &DRRs, err str);

generation

Performance example

2000

1500

1000

500

-500

-1000

-1500

-2000

0

Hardware specifications

Operating System	Windows Vista 64 bit			
Processor type	Intel® Core™ 2 Duo			
CPU clock frequency (GHz)	2.66			
Graphics card type	NVIDIA® Quadro® FX3700M			
No. processors core	128			
Memory bandwidth (GB/s)	51.2			
Graphics memory (MB)	1024			

1024×1024×360

12.17 sec (~30fps)

(1.0mm step length, non-Siddon mode)

Definition of the coordinate systems

Example application (1): DRR generation as an image-guidance tool

- Functions used
 - Forward projector
- Integrated into Slicer 3
- Real-time (~30fps)

Tracker-on-C

Video image captured by Microntracker

Example application (2): Intensity-based 2D/3D rigid registration

Floating

image

- Functions used
 - Forward projector, similarity measure computation
- Function other than the toolkit
 - Optimizer (in Matlab): downhill simplex

Fixed image ✓ with edges of the floating image

Example application (3): Intensity-based 3D/3D rigid registration

Functions used

- Resampler, similarity measure computation (MI)
- Function other than the toolkit
 - Optimizer (in Matlab): downhill simplex

Fixed volume =

Floating volume

Sagittal slices

Axial slices

Example application (4): FDK reconstruction

- Functions used
 - FDK filtering, voxel-driven back projector
- Integrated into istar3D (cone-beam reconstruction platform developed in I-STAR lab)

Performance example

Input: 768x768, 360 projections Output: 512x512x512 volume GPU: nVidia Quadro FX3700 About 62 seconds

Example application (5): Statistical reconstruction

- Functions used
 - Siddon-based forward projector, ray-driven back projector
- Integrated into Matlab software (written by Dr. Stayman)

Input projection images (6 images)

Reconstructed volume

An example of sparse sample (6 samples) reconstruction

Current status

- Implementation of the basic functions has been completed and almost ready for "version 1.0" release.
- Some code are not clean and need to reorganize to make things consistent.
- Need to organize test datasets (ground truth reconstruction) to check the functionalities.

Future works

- Unit test & debug
- Multi-GPU support
 - partly supported in the current version
- Re-organize (clean up) API
- New functions/applications
 - Polyenergetic projector ('segmented volume' projector)
 - Depth map computation for video/CT registration
 - Statistical atlas using voxel-based statistics with GPUacceleration (fast instance generation, 2D/3D reg., etc.)
 - Connect the 'real-time' X-ray imaging with robot (da Vinci, ROBODOC)?
 - etc. (any suggestions are very welcomed.)

Additional features of the toolkit

- Surface Projector
 - Generate projection images of surface (polygonal mesh) model using VTK
 - Generate multiple images at the same time
 - Can be used from MATLAB, C/C++, etc. along with
 DRR generator
 CT volume data
 Polygon mesh model

X-ray image

DRR

Surface model projection (rendering)

Implementation and experimental validation of an intensity-based rigid 2D/3D registration

Intensity-based rigid 2D/3D registration:

Three Datasets for evaluation

- 1. Sawbone
 - Flat-panel
 - without soft tissues
- 2. Cadaver #1
 - Flat-panel C-arm
 - with soft tissues
- 3. Cadaver #2
 - Image intensifier
 - with soft tissues

Fixed images (Log corrected) Floa

Floating images

Dataset 1: Sawbone phantom

600

200 300 400 500 600

- Preop CT
 - Diagnostic CT at Bayview
 Medical Center (2009/3/3)
 - 256x256x256 voxel (cropped)
 - 0.564x0.564x0.6 mm/voxel
 - 135 kVp, 250 mAs
- Intraop X-ray
 - C14 at MISTIC (2010/3/8)
 - 768x768 pixel
 - 0.388x0.388 mm/pixel
 - 100 kVp, 5.8 mA

slice 1

1500

1000

Dataset 2: Cadaver #1

- Preop CT
 - Diagnostic CT at Bayview Medical Center (2010/4/29)
 - 256x256x256 voxel (cropped)
 - 0.782x0.782x2 mm/voxel
 - 135 kVp, 250 mAs
- Intraop X-ray
 - C14 at MISTIC (2010/4/30) 300
 - 768x768 pixel
 - 0.388x0.388 mm/pixel
 - 120 kVp, 5.2 mA
 - After cement injection

Dataset 3: Cadaver #2

- Preop CT
 - Diagnostic CT at Bayview Medical Center (2009/8/7)
 - 300x300x700 voxel (cropped)
 - 0.835x0.835x0.602 mm/voxel
 - 135 kVp, 250 mAs
 - Gaussian filter to reduce streak artifact
- Intraop X-ray
 - Philips at Bayview (2009/8/10)
 - 480x480 pixel
 - 0.45x0.45 mm/pixel
 - Before cement injection
 - With distortion correction
 - Only 7 images with narrow separation angle

Gradient Information Similarity Measure

$$\alpha_{i,j} = \arccos \frac{\nabla p_1(i,j) \cdot \nabla p_2(i,j)}{|\nabla p_1(i,j)| |\nabla p_2(i,j)|}$$

(angle between two gradient vectors)

$$w(i,j) = \frac{\cos(2\alpha_{i,j}) + 1}{2}$$

Gradient Information (GI)
Similarity Measure
$$\alpha_{i,j} = \arccos \frac{\nabla p_1(i,j) \cdot \nabla p_2(i,j)}{|\nabla p_1(i,j)| |\nabla p_2(i,j)|}$$
(angle between two gradient vectors)
$$w(i,j) = \frac{\cos(2\alpha_{i,j}) + 1}{2}$$

$$G(p_1, p_2) = \sum_{i,j} w(i,j) \min(|\nabla p_1(i,j)|, |\nabla p_2(i,j)|)$$

Pluim, J.P., Maintz, J.B. and Viergever, M.A., 2000. Image registration by maximization of combined mutual information and gradient information. IEEE Transactions on Medical Imaging, 19(8), 809-814.

Gradient Information (GI) **Similarity Measure**

Σ

Optimizer

- 1. Nelder-Mead Downhill Simplex
 - Heuristic optimization algorithm
 - No derivative computation
 - Matlab implementation fminsearch()
- 2. CMA-ES (Covariance Matrix Adaptation Evolution Strategy)
 - No derivative computation
 - Known for rubostness and efficiency in a rugged search landscape
 - Matlab implementation by Hansen^{*1}

*1: Hansen N. The CMA evolution strategy: a comparing review. In: Lozano JA, Larranaga P, Inza I, Bengoetxea E, editors. Towards a new evolutionary computation. Advances on estimation of distribution algorithms: Springer; 2006. p. 75-102.

from Wikipedia

• Optimization was repeated 4 times using different resolution

Ground truth registration

- 1. Flat-panel C-arm (Siemens C14)
 - Geometric calibration using helix BB phantom
 - 3D/3D registration between Preop CT and CBCT

- 2. Conventional C-arm
 - Pose estimation using FTRAC
 - Diagnostic CT of the cadaver with the FTRAC

Evaluation method: Error measure

- mTRE (mean TRE)
 - An error measure proposed in
 [1] to determine 3D error of a registration.
 - While it is widely used in literature, definition of the "target" points differ from study to study

$$mTRE = \frac{1}{k} \sum_{i=1}^{k} \left\| T_{reg} p_i - T_{gold} p_i \right\|$$

Estimated

Ground truth

[1] van de Kraats EB, Penney GP, Tomazevic D, van Walsum T, Niessen WJ. ,
"Standardized evaluation methodology for 2-D-3-D registration," IEEE
Trans.Med.Imaging Sep 24(9), 1177-1189 (2005).

Evaluation method: Initial guesses

- 50 registration trials from different initial pose were conducted
- Initial poses were randomly selected by perturbing the ground truth registration by [-10 +10] mm, [-10 +10] degrees.
- The same initial poses were used for all experiments

Fixed image

Floating image

#1(768x768):(-0.59, 6.57, 1.21, -7.34, 0.47, -5.09) cost: -0.003633, elapsed: 0.236 sec Fixed + edge of DRR

#1(768x768):(0.77, 7.53, -4.02, 3.37, 1.95, -0.30) cost: -0.005474, elapsed: 0.240 sec Fixed + edge of DRR DRR

Edge of the floating image

Randomly generated initial guess (2 examples out of 50)

Results

One typical trial

- GI similarity measure
- CMA-ES optimizer
- Siddon-based
 DRR

Result of 50 trials: comparison of number of images

Similarity Measures: Sawbone Images

*Sum of the similarity measures of the 2 image pairs

Similarity Measures: Cadaver #1 (flat-panel)

Challenges: Soft tissue and metallic instruments

Challenges: Soft tissue, metallic instruments, small separation angle

Result of 50 trials: comparison of similarity measures

- All similarity measures showed almost the same performance in Sawbone images.
- GI worked significantly better than MI and NMI in cadaver images

Comparison of DRR generator

- Step length didn't affect
 registration result in Sawbone
 and Cadaver #2
- In Cadaver #1, increasing step length increased final mTRE

Comparison of Optimization Strategy (coarse-tofine multi-resolution optimization)

- The effect of coarse-to-fine multi-resolution strategy was statistically significant in Sawbone (P<0.001) and Cadaver 1 (P=0.026)
- No significant difference was found in Cadaver2 (because of the resolution of the original images?)

Comparison of Optimizer

- In Cadaver #1 images, CMA-ES showed better precision than Downhill Simplex.
- Other two experiments showed no difference (To be confirmed by a statistical analysis)

Summary

- In 3 experiments, mean TRE was 0.229 ± 0.042mm, 1.404 ± 0.967mm, 3.241 ± 0.756mm, respectively.
- GI worked significantly better than MI and NMI in presence of soft tissues.
- Coarse-to-fine multi-resolution strategy was significantly effective
- Registration accuracy may depend on the target anatomy, image quality as well as the geometries (separation angles) of each image.

Next step

- Integration with navigation systems
 - Bone augmentation navigation system, TREK, etc.
- Further cadaver studies
- Integration with reconstruction algorithms that require registered prior CT
 - SxMAC, ROI recon, Hybrid recon, etc.