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Deformable Registration

Im(x) Im(®(p,X))
* Many different ways to parameterize the deformation function
* Typically some version of a spline or radial basis function
* One desirable (though not universal) property: diffeomorphism
* A function @ is diffeomorphic if Qis bijective and both @ and ®* are smooth
Images: Tom Flexche_;b_
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Deformable Registration

Compare images

and update Deformation parameters

=
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology % v .J
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Deformable Registration from Point Cloud Matches
Suppose that we have a bunch of corresponding point locations between an
initial shape and a deformed shape. How can we use these point matches to
compute a general deformation?
Images: Tom Fletcher P
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology g
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Deformable warping from point cloud matches

* One answer might make use of what we learned in
programming assignments
— E.g., fit Bernstein or B-spline polynomials to determine distortion.

u = TrimToBox(X)

y=>¢,,B(u,)Bu,)B/u,)
ijk
or
y= 2 c, NN (U )N, (u,)

— Note: In this case, the coefficients will also parameterize the
“Shape"

Copyright 2021 R. H. Taylor
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Radial Basis Functions

Given a scalar function ¢() and a set of sample points p, with
associated deformations ak, one can represent the deformation ¢

at a point X by

a(%)=>",d,, (%~ B,])

* Many possible functions to use for ¢

* Common choices include Gaussians and “thin plate splines”, which have
non-compact support (i.e., ®(y)>0 for arbitrarily large y)

* Others have compact support (i.e., ®(y)=0 for |y|> some value)*

* See: M. Fornefett, K. Rohr, and H. S. Stiehl, "Radial basis functions with compact support for elastic
registration of medical images", Image and Vision Computing, vol. 19- 1,Ai2, pp. 87-96, 2001.
http://www.sciencedirect.com/science/article/pii/S0262885600000573
http://dx.doi.org/10.1016/S0262-8856(00)00057-3

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, e\
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Thin Plate Splines
* Minimum energy spline deformations
TPS(V;aB,CP)=a+Bev+y_ cU(N-p|)
where U(r)=r?log(r) for 2D images

* Global support

* Popularized by Fred Bookstein for analysis of anatomic
variation

— F. L. Bookstein, Morphometric tools for landmark data, Geometry and
biology: Cambridge University Press, 1991.

Copyright 2021 R. H. Taylor
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Thin Plate Splines Digression

« Some citations (from G. Donato and S. Belongie, “Approximation Methods
for Thin Plate Spline Mappings and Principal Warps”, 2002;

http://www.cs.ucsd.edu/Dienst/Ul/2.0/Describe/ncstrl.ucsd_cse/CS2003-0764 )

[1] C.T.H. Baker. The mmmenical irsamieni of invegral equagons. Oxford: Clarendon Press, 1977,

[21 S. Belongie, J, Maftik, and I, Puzicha, Matching shapes, In Procy 840 'l Conft Compurer Vision, volume 1, pages 454=461, July 2001,

[3] F. L. Bowkstein, Principal warps: thin-plae splines and decomgusition of defomations. [TEEE Tres. Patfern Analysis anel Macivne
Inielligence, | NGS6T-585, Tune [989,

[4] H. Chui and A, Rangaragan, A new atgorithm for non=rigid point matching, In Procs [EEE Conf, Conpais, Vision amd Parem Recogiision,
pages 44=5 1, Jume 2000,

[5] MH. Davis, A, Khestanzad, D. Flamig, and S. Hamms. A physics-bosed ooondinate asnsformation for 3-d image maching. [EEE Trans.
Medical Imaging, 16(3y317=328, Junc 1997,
[6] F.Ginosi, M. Jones, and T. Poggio, Regullarization theary and neurald networks anchitectunes, Newnl Compueiation, (212 19=260, 1995,
[7] M. L. D, Powell, A thin plite spline method for mapping curves indo curves in two dimensions,  In Compuranional Teclmiaues and
Applicarions (CTACYS ), Mclbourng, Ausiralia, 1995,
[8] AJ.Smwda and B. Schedlkopd, Sparse grocdy matrix approximation for machine karning. In /CML, 2000,
[91 G. Wahbe, Spline Model's for Observarional Daia, STAM, 1990,
[00] Y. Weiss, Smoothness in Bayers: Motion Segmentaion using nonparametric mixture estimadion. InPeas TEEE Conf, Compest. Vision and
Pavsern Reco gmisian, pages 520526, 1997,
(LT €, Williames and M. Seegper, Using the Nystntim medhod 0 speed up kernell machines, Tn'T, K. Leen, T, G, Dietierich, and V. Tresp, editors,
Advances in Newral Informarion Processing Syssems 13: Proceedings of the 200 Conference, pages 682-688, 2001,

Copyright 2021 R. H. Taylor
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M-dimensional Thin Plate Spline Summary
Given
TPS(V;aB,CP)=a+Bev+y_ cU(V-p|)
where
uiry=r? Iog(r) for 2D
=r? Iog(rz) for 3D
N T
V= [v1, ,VM}
- T
p,' = [p»]y' "7pM]i
- - T Note: Some sources give
P= [P1,' “’pN] r*™In(r) form=2or4
- - U(r)= -
C= [61,- ' "cN] g { rm otherwise
B= [b1’”"bM}
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology jﬁ,-
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M-dimensional Thin Plate Spline Fitting
Given
V=[V,V,] F= “fN}
find a, B,C such that
f=TPS(V,; aB,CV)
To do this, solve the linear system
K[NxN] 1[N><1] v CT F7
LV 0 a |=| 0
Vi o o,, B Oy
where
K, =K, = U(‘ |\7,. — \7/.H) with U(r) = r?logr or U(r) = r’logr?
K,, = (¥, ~,)o(v,~¥, Jiog [V, ~¥,)o(¥,~¥,)
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology jﬁ,-
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TPS 2D case
Given a set of points ﬁ, = [x,.,yi] and corresponding points 6,* =1X%Yy. "
we want to find TPS parameters such that p,* = TPS(p,;a,B,C,P)
To do this, we solve the least squares problem
0 U1,k U1,N 1 X1 y1 61 51 *
U,.j. : : :
Uk1 0 Uk,N 1 X Y : P«
U, : : :
[ ) a =l> &
UN,1 UN,k 0 1 XN yN HN pN
1 1 1 00 o0f|2] [0
X, X, x, 00 O bl |0
y1 yk yN 0 0 by 0
where U, =U, =U(|B, - B |)
) o =
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, R J
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M-dimensional Thin Plate Spline Fitting
Define
K[NxN] 1[N><1] v
L[M+N+1><M+N+1] = 1[1XN] 0 0
Vv’ 0 0,
If there are many points, this matrix may be expensive to
invert or even pseudo-invert. There are various methods
to deal with this problem. These include
e Use a random sample of the \7,. to approximate the solution
e Use a random sample of the basis functions & all data
to solve problem in least squares sense
e Use matrix approximation methods
See
http://www.cs.ucsd.edu/Dienst/UI/2.0/Describe/ncstrl.ucsd_cse/CS2003-0764
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Other Radial Basis Functions

Note that the function U(r) in the previous discussion is a
an example of a more general class of "radial basis functions".
These functions can be used in deformable registration in much the same
way as the TPS function used above. Other commonly used radial
basis functions include
U(ry=(r*+c?) forpeRr
U(ry=(r*+c*y" forpeRr,
Ue)=e ">
The last one is probably the most popular for global support. There
are also radial basis functions with "compact" support. For example*

* See: M. Fornefett, K. Rohr, and H. S. Stiehl,

k+1+\ﬂ "Radial basis functions with compact support for
. elastic registration of medical images", Image
I 1 _— |f 0 <r<ogo and Vision Computing, vol. 19- 1,Ai2, pp. 87-96,
\I}(r ) J) = o - - 2001.
http://www.sciencedirect.com/science/article/pii/
. S0262885600000573
0 otherwise hitp://dx.doi.org/10.1016/50262-8856(00)00057-
3
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, ) J
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Deformable Registration to Statistical “Atlases
Deformable 3D/3D Deformable 2D/3D
Jianhua Yao Ofri Sadowsky
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬁ,
15

10/12/21



Deformable Altas-based Registration

* Much of the material that follows is derived from the Ph.D. thesis work of
J. Yao, Ofri Sadowsky, and Gouthami Chintalapani:

— J. Yao, “Statistical bone density atlases and deformable medical image registrations”, Ph.
D. Thesis, Computer Science, The Johns Hopkins University, Baltimore, 2001.
— O. Sadowsky, "Image Registration and Hybrid Volume Reconstruction of Bone

Anatomy Using a Statistical Shape Atlas,” Ph.D. Thesis, Computer Science, The
Johns Hopkins University, Baltimore, 2008

— G. Chintalapani, Statistical Atlases of Bone Anatomy and Their Applications, Ph.D. thesis
in Computer Science, The Johns Hopkins University, Baltimore, Maryland, 2010.
* A number of other authors, including
— Cootes et al. 1999 — “Active Appearance Models”
— Feldmar and Ayache 1994
— Ferrant et al. 1999
— Fleute and Lavallee 1999
— Lowe 1991
— Maurer et al. 1996
— Shen and Davatzikos 2000

9

) @
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology % Ny
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What is a “Statistical Atlas” ?

* An atlas that incorporates statistics of anatomical shape and
intensity variations of a given population

Credit: G. Chintalapani 2010

) =
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology SNV
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Statistical Atlases

Shape distribution

CT scans from a population

Intensity distribution

Slide Credit: G. Chintalapani 2010

=X
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, R J
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Statistical models

* The next few slides will review the use of the Singular Value
Decomposition (SVD) in constructing statistical shape models.

* There is a close relationship between this material and the
“principal components analysis” (PCA) methods you may have
encountered in a statistics class.

=X
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, R ;’
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Principal Components Analysis (PCA)

Suppose that you have a set of N vectors 5,. in an M dimensional space?
Is there a natural "coordinate system" for these vectors?

=X
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, .J
20
Principal Components Analysis (PCA)
We proceed as follows
= (avg) I S 5o
a® = ; b.=a —a ;B=%;~b;
N i i 1 N
Then form the singular value decomposition
T M T (N) ;
B=UXV' =U V' where X' = diag(o,,---,0,)
Then we note that M= UX?U". Of course U is huge, but we have the
following useful fact. We note that
01
o ..o o = ' T_[g o [yMyT _ gy nyT
B= u1, ’uN’uN+1’“-'uM oy \Y —[u1, ,UN}Z V' =U"x"V
0 0 O
=X
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, .j
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Principal Components Analysis (PCA)

This means that any column Bkof B may be expressed as a linear
combination of the first N columns of U

B= [ﬁ1,-~-,ﬁN]E‘N)VT = yMypMy’?

b, = AW, + -+ AT, = UMA®
where

A% = transpose(U" ’)Bk
So

a, =a" +b, =a® + A", + -+ AV,
But often the last few values of the A, are small. If we ignore all but
the first D values, we have

a2 ~a@® g 4. ®G
a, ~a®™ +\"u +-+ A uy

=Y
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, R J
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Principal Components Analysis (PCA)
Suppose now that we have an arbitrary a®”. We can
approximate a“® as follows:
B(arb) _ a(arb) o a(avg)
A = transpose(U®)b@™)
alamb) . Z(avg) (arb)7 . (arb)
a™ xa™ + A" -+ AU
Copyright 2021 R. H. Taylor Engineering Research Center for Compugr Integrated Surgical Systems and Technology
23
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Statistical Atlases & PCA

J

S . L
Given a set of N models X = [xk(”} = [~~Xk(”,yk(”,zk(”,~~

, compute

= . - 1 g .
X®9 =%, 9| where X, = —%"x ) and the differences
N

DV =X —X®9 =|d " |where d,’ =x ) —x @9 Create the matrix

d0 dm d0
d d, d
D:[... DY —| g g0 G
[3NverticesxN| dk dk dk.
d Mm - q 0 d (N)
Nvertices Nvertices Nvertices
=X
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, .J
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Statistical Atlases & PCA
Compute the singular value decomposition of D
D=UsV’ where ¥ = | 989(7)
0
D_U diag(a)V"
0
Note that
L D'D= 1 vU'uUzv’ = 1 R
N -1 N-1 -1
L DD = 1 Usv'vely = 1 Uz’
N-1 -1 -1
=X
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, .j
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Statistical Atlases & PCA

Any individual model DY can be written as a linear combination of the

columns of U. Treating DY’ as a column vector, we can write this as

() 0)
N X
=) : : . . iaa(G\VT
D =Ue| where | | is thej” column of diag(c)
)\(/) )\(/) 0
N N
0 0
If we define
M= U ... ™ ] (i.e., the first N columns of U)
we get the expression
=) S . " T
D =M\ where X is the j* column of (d/ag(a)V )
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Statistical Atlases & PCA

Note that while U is 3N x 3N (i.e., huge), M has only the first

vertices vertices

N columns, since there are at most N non-zero singular values

In fact, we usually also truncate even more, only saving columns
corresponding to relatively large singular values o, . Since the standard
algorithms for SVD produce positive singular values o, sorted in descending
order, this is easy to do.

Note also, that since the columns of M are also columns of U, they are
orthogonal. Hence M'M =1, ,. But MM" = C will be an

3N, ices X 3N, .o Matrix that will not in general be diagonal.
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,

27

10/12/21

13



Statistical Atlases & PCA
As a practical matter, itis not a good idea to ask your SVD program
to produce the full matrix U foran 3N .. x N matrix D. Many SVD
packages give you the option to compute only the singular values &
and the right hand side matrix V or its transpose. Then, M can be
computed from
Mdiag(5)V" =D
Mdiag(c) =DV
M =DVdiag(s)™"

1/ o, 0 e 0
0 :
=DV : 1/ o
: - 0
0 e 0o 1/ oy
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
28
Statistical Atlases & PCA
Similarly, given a vector D we can find
a corresponding vector A™" from the following
6(inst) _ MX(iHSt)
MTﬁ(inst) _ MTM/‘\'(inst)
_ X(inst)
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
29
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Statistical Atlases & PCA

Suppose that we select = [RISERN ]I" as a random variable with some
distribution having expected value E(X) = 0 and covariance
EOY) - EQWN,)

cov(\)=E(XeXT)= P l=x?
EONN) - END
and compute a corresponding random model i( X)

X (N)=X) { Me X
What can we say about the expected value and covariance of f(( X)?

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Statistical Atlases & PCA

For the expected value, we have
E(X(\))= E(X®9 + Me X)
=X Me E(X) =X +Me0
X(@9)

Then
cov(X(\)) = E(D(X)eD(})") where D(})=X(\)— X9
= E(MOXOXT M)
= MOE(XOXT)OMT
=MeX?eM’

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,

31
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Statistical Atlases & PCA

Thus, if we assemble a representative sample set of models i(f), and

compute the average model X and the
SVD of the corresponding matrix D = {u-()q((” — i(avg))

, then

we have a way of generating an arbitrary number of models
y (inst) —yz(avg) 3 (inst) —yz(avg) (k) (inst)
X=X @9 AP =X @9+ " MO,

with the same mean and covariance. |.e., we know how the

individual features X, ™

co-vary.

Further, given a representative model instance X" we can

compute a corresponding set of mode weights A\ from
Ninst) _ g7 (i(inst) _ i(avg))

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Statistical Atlas

Thus, one representation of a statistical "atlas" of models consists of
o An average model X9

e An eigen matrix M of variation modes
e A diagonal covariance matrix ¥* for the modes

This information may be used in many ways, including

e Atlas-based deformable segmentation/registration
o Statistical analysis of anatomic variation
o efc.

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Statistical Atlas Construction

template image Training database of medical images

] 7 -

1,' ‘l‘l u u Points, landmarks, meshes, parametric
models, level sets

Model Representation/Parameterization |

g 11

Parameterized representation of medical
@ images
oo o

lb | 1 1

| 2. Model Correspondence/Alignment

Rigid, affine, deformable registration
| methods

Aligned images in correspondence to the
template

3. Statistical Analysis PCA, ICA, Kernel PCA, non-

linear statistical methods
Slide Credit: G. Chintalapani 2010

Statistical model/atlas

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology R J
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e U 2= |
i

Model Representation

» Tetrahedral mesh represents shape

» Bernstein polynomials approximate CT density within each

tetrahedron[1,2]
U,
P'(u)= ZCKBE(U)
[K|=d

where

k =k, ky, Ky, k) u:(uoaulsuzauz)

K| =k, +k +k,+k,  |u|=1 Uy u,

d _ . ko, ki ko ks
By (w)= ko!kl!kz!ka!uo Uy u,

» Alternative might be to use voxels directly after deformation
to mean shape

[1] Yao, PhD Thesis, 2002; [2] Sadowsky, PhD Thesis, 2008

Credit: G. Chintalapaﬁ.u‘ 010, —
Copyright 2021 R. H. Taylor ineeri i U
pyrigl V| Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬁ, SAY
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Model Creation

[1] Analyze, www.mayoclinic.org
[2] Mohammed et al., 2005

Surface rendering of pelvis tetrahedral model; Cross-section of tetrahedral
model showing CT densities

) 0=y
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology SN

Slide Credit: G. Chintalapani 2010
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Model Correspondence

* Need to establish a common coordinate frame for the training
database

* Need to establish point correspondence between the training
datasets

Slide Credit: G. Chintalapani 2010

N . N
Copyright 2021 R. H. Taylor ineeri Center for Ct Surgical Systems and Technology SN
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Template

Model Shape Correspondences

Template

Training
cT
Data sets

slide Credit: G. Chintalapani 2010

Copyright 2021 R. H. Taylor

Mesher
3D/3D
> registration

Warped

Mesh

Deformation
Field

Volumes

Center for C

* Automatic deformable registration based shape correspondences

Mesh
Instances
for training
data sets

Flowchart for establishing shape correspondences for the training sample

; e
Surgical Systems amﬂlmﬂt e

38

Model Intensity Correspondences

Template
cT

Training
cT
Data sets

Copyright 2021 R. H. Taylor

Mesher

3D/3D

registration

Template
Mesh

Shape-Free
Warped CT

Deformation
Field

e Automatic deformable registration based correspondences

Fit
Polynomial

Polynomial
Coefficients (C)
for training

CT data sets

Center for Ce

Flowchart for establishing intensity correspondences for the training sample

o=
Surgical Systems and Technology BN

39
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Principal Component Analysis

* Given the mesh instances of training sample,

XX - - Xy

Yoo Y- - Dy

NN N Ly - - Gy
sy Yo =

XN ! z

Y Y2+ + Zay

Za Zwz o+ - Ty

* Compute mean and subtract the mean from the sample

14 .
§=5-5=5-->3%§

i=1

e Compute

2

SVIXS)=UDV"

1

With principal components in U and eigen values A= —DDT
Slide Credit: G. Chintalapani 2010 N -1 —
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, .J
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Principal Component Analysis
* Given the PCA model, any data instance can be expressed as a
linear combination of the principal components
N-1
S+ E U, o
k=1
* Compact model - fewer components
* Select first ‘d’ components represented by the ‘d’ eigen values
Slide Credit: G. Chintalapani 2010 —
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, .j
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Statistical Shape and Intensity Models

* Shape statistical model: Mesh vertices become data matrix

d
S+ U N =5+U"2

. .. k=1 . _
* Intensity statlstlca]T model: Polynomial coefficients become
data matrix

p
¢ +2Ykluk =c+Y u

k=1
Slide Credit: G. Chintalapani 2010
=X
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, R J
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Deformable Registration Between Shape/Density
Atlas and Patient CT
* Goal: Register and Deform the statistical density atlas to
match patient anatomy
* Significance:
— Building patient specific model with same topology (mesh
structure) as the atlas
— Automatic segmentation
— Accumulatively building models for training set
— Pathological diagnosis
Jianhua Yao - P
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Susgigié Systens Mﬂmﬂlmntawa .j
43
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Typical pipeline for atlas-assisted registration/registration

Statistical
Atlas

Deformable model Instance of atlas

i

N

SN

\ @ / fitting to atlas

Deformable
registration of
model to image

Deformed
instance

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, g\
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Deformable model fitting

Statistical
Atlas

e
&)

AL

Optimization
Process

p* =argminE(Im,,©(g,Im,)
p=l0.X i)

4

Create
Instance

O(p»)

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, e\
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Deformable Registration Scheme

* Affine Transformation

— Translation T=(t,, t, t,)

— Rotation R=(r,, r,, ;)

— Scale S=(s, s, s,)  [Similarity if s,=5,=5)]
* Global Deformation

— Statistical deformation mode (M)
* Local Deformation

— Adjustment of every vertex

Jianhua Yao

=X
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology jﬁ,- .J
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Optimization Algorithm
* Direction Set (Powell’s) method in multi-dimensions
— Search the parameter space to minimize the cost functions
— Advantage
* Don’t need to compute derivative of cost functions
* Much fewer evaluations than downhill simplex methods
* Alternatives
— Downbhill Simplex (similar advantages)
— Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
method (similar advantages)
— Levenberg-Marquardt (requires computing gradients)
— Many others
Jianhua Yao P
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology jﬁ,- .j
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Local Deformation

* Motivation: Statistical deformation can’t capture all the variability due
to the limited number of models in the training set

* Locally adjust the location of vertices to match the boundary of the
bone and the interior density properties

* Use multiple-layer flexible mesh template matching to find the
correspondence between model vertices and image voxels

* Apply radial basis function (or other scheme) based on vertex-to-voxel
location matches

Jianhua Yao
Copyright 2021 R. H. Taylor i i N D E—?]
Pyrig V! Center for C Surgical Systems and Technology SNV

Multiple-layer Flexible Mesh Template

» Each vertex on the model defines a
mesh template

* Template is in the form

Jianhua Yao

: =]
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology 3
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Template matching

For each pixel location X, :
Place v, at X,
For each neighbor v,
Find the X, near v, that minimizes E(X,,V,)
Score (X,) = E(X,,Vo)+ >, W,E(X,.V,)

Pick the X, with the best score

9

Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology $ @\
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Template matching

For each pixel location X, :
Place v, at X,
For each neighbor v,
Find the X, near v, that minimizes E(X,,V,)
Score (X,) = E(X,,Vy)+ >, W, E(X,.V,)

Pick the X with the best score

=
Copyright 2021 R. H. Taylor il i Center for C Surgical Systems and Technology $ @R
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Template matching

For each pixel location X, :
Place v, at X,
For each neighbor v,
Find the X, near v, that minimizes E(X,,V,)
Score (X,) = E(X,,Vo)+ >, W,E(X,.V,)

Pick the X, with the best score

Score = 4.6 (fow/k =02)

-

9

Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology $ @\
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Template matching

For each pixel location X, :
Place v, at X,
For each neighbor v,
Find the X, near v, that minimizes E(X,,V,)
Score (X,) = E(X,,Vy)+ >, W, E(X,.V,)

Pick the X with the best score

Score = 3.2 (fom/k =072)

-

=
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Results (Affine Transformation)

Initial Intermediate Final
Jianhua Yao - =
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, ) J
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Results (Global Deformation)

Initial Intermediate Final
Jianhua Yao - =
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, @) ;’
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Jianhua Yao

-
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, g\

Results (Local Deformation)

Initial Intermediate Final

58

—_
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬁ, R ;’

Deformable Atlas-to-CT Registration (3D-3D)

Jianhua Yao

=X
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Results (Deformable Registration)
Deformable Atlas/CT Registration
1 1
Affine Gldbal Deform  Logal Deform

100 : i
1
90 s !
. |
80 \ : i
= 70 t :
=} ‘ i i
o 60 T +
c \ 1 .
= 50 : i
1
8 0 o i :
[ M | 1
o 1
w 30 1 ;
1
20 osé :
1

10 %ﬁ

-2 2 8 5 5 2 2 8 o &R
Jianhua Yao .
Iteration L
Copyright 2021 R. H. Taylor ineeri Center for Ci Surgical Systems and Technology _%
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Iterative “bootstrapping” of Atlas

Bootstrapping loop

Initial Atlas

m—

Training datasets

Mesh instances and
warped volumes

Chintalapani et al. MICCAI 2007

! )N
Copyright 2021 R. H. Taylor Slide crekigingeting Baspaisivansgrfar Computer Integrated Surgical Systems and Technology %
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Leave-Out Validation Experiments

Vertex-Vertex Distance —— iteration1

e # of iterations: 5

6 (mm) == iteration2
~+= iteration3
* H# of data sets: 110 5 == iteration4 ||

= iteration5

. 4,
* # of data sets in atlas: 90
3,
* # of data sets left out: 20 » ‘ ‘ . .
] 0 20 40 60 80 100
* @Given a left-out dataset’ Sj Number of principal components included in the model

compute the estimated shape from 3 —
atlas using Surface-Surface Distance T poraten

251\ (mm) :!:era:ioni ]
A=U"(s,~5)
¢ =S+UA

= iteration5
1

)

0 20 40 60

8 25
. inci )
Copyright 2021 R. H. Taylor Slide crekgirgering Baseaisivansgrfar Computer Integ"r!alim?ﬁ'g?cfaﬂwt%msa zlarﬁ'P Fe‘&%g%ngvts a%
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Distribution of Surface Registration Errors

Iteration 1

Iteration 3

Iteration 5

Copyright 2021 R. H. Taylor
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Choice of Initial Template

* Claim:
— iterative method does not depend on the choice of template
* Criteria:
— Mean shape converges
— Modes exhibit similar deformation patterns
* Experimental setup:
— Three random templates
— Atlases with and without bootstrapping compared
* Result

— All three atlases exhibit similar deformation patterns after
bootstrapping

U=

Copyright 2021 R. H. Taylor Slide cremi@&hhm?mmdﬂf Computer Integrated Surgical Systems and Technology % SN
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Average Difference between Atlases 1,2 and 3

Mean

Mean + Mode 1

Mean + Mode 2

Mean + Mode 3

Before iteration After iteration

o=

Copyright 2021 R. H. Taylor Sli@aeineeninafesaprshiiantenfarfommuter Integrated Surgical Systems and Technology % SRy
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Training Sample Size

* Goal:

— To determine the size of the training sample to build a stable
statistical atlas

* Criteria:
— Atlas is stable
— No significant improvement in residual error
* Experimental setup:
— Varying sample size 20, 40, 60, 80
— Leave-20-out validation test
* Result:
— Minimum of 50 data sets are required for pelvis atlas

O
Copyright 2021 R. H. Taylor Slide crekigingeting Baspansivanigrfar Computer Integrated Surgical Systems and Technology m, 3 J
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Tralnlng Sample Size
6 e 5 T T T T T
—20
o1 - Vertex-Vertex Correspondence.Errors ig i
IS
3 i
s
£
[0] i
©
>
o -
B
(0]
14
2 5 1 Il ] 1 Il 1 Il 1
0 10 20 30 40 50 60 70 80 90
Number of principal components
=
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Surface residual error using 18 modes for different sample
set sizes

60 dataset atlas 80 dataset atlas
! '
Oomm 3mm 6.5mm
) =
Copyright 2021 R. H. Taylor Slide cregmg‘@g‘ylhgﬂqpmmdﬁr Computer Integrated Surgical Systems and Technology -ﬁ BN
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Stability Analysis — Mean Shape
Training sample size
4
3
2
1
0
Mean shape comparitive study
1 T r T :

E 0.8 ——iterat!om |

5 ——iteration5

u 06 1 1

=

=

=4

204

4

e

]

g02

=

L B

0 i H i i
20 40 60 80 100
Training sample size + —
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Shape Atlas Mesh Refinement

* Note that the methods described so far all assume that
the vertices of the mesh after deformable registration all
correspond to each other

¢ This is often not the case

* Also, some image segmentation methods we would like to
use do not always produce the same surface mesh

* Is there anything we can do???

e Yes: The basic idea is to do deformable registration of statistical model
vertices to the surface(s) to find corresponding points, and then iterate.

Mesh Vertex Improvement

(click here)

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,

70

=X

T
J
SN

Active Appearances

* The material following is based on

— T.F. Cootes, G.J. Edwards, and C.J. Taylor, “Active Appearance
Models”, Proc. Fifth European Conf. Computer Vision, H.
Burkhardt and B. Neumann, eds., vol. 2, pp. 484-498, 1998.

— T.F. Cootes, G.J. Edwards, and C.J. Taylor, "Active appearance
models," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 23, no. 6, pp. 681-- 685, June 2001.

 Authors’ focus was development of method for matching
statistical models of appearance to [2D] images

* Applied to faces, 2D medical images

+ Basic idea has since been extended to many
applications in 2D & 3D medical imaging

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m)
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Miccai_2011_TALK_Sharmi.pptx

Statistical Appearance Models

* Shape
— In this case, 2D locations of key feature points
» “Texture”
— l.e., patterns of intensities or colors across image patches

» Method to build: Identify key points; do deformable warp of
points to common coordinate system; normalize intensities; read
intensities into an intensity vector G

Labelled image Points Shape-free patch

T.F. Cootes, G.J. Edwards, and C.J. Taylor, "Active appearance models," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-- 685,

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology
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June 2001
i
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Appearance models, con’ d

Appearance model is defined by an instance parameter

vector X, mean shape and texture X“and G, and variation
mode matrices M, and M. Thus, an instance () would be

. o N. = o
G = glav) JrMG o\ = g9 Jr} :k=G1M((§). )\k(/)

. S N, = o
XY — xtava) JrMX o \U) = Xlava) 4 § :k;Mg:(). )\k(/)

In fact, they created a multi-resolution hierarchy with models similar
to the above at different resolutions.

Used linear principal components analysis (PCA) to determine
the statistical parameters.

T.F. Cootes, G.J. Edwards, and C.J. Taylor, "Active appearance models," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-- 685,

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology
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Training Set for 2001 Cootes &
Taylor paper
* 400 faces
* 68 points
* 10000 intensity values

e

@J

Y4

Labelled image Points Shape-free patch

T.F. Cootes, G.J. Edwards, and C.J. Taylor, "Active appearance models," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-- 685,

June 2001
i =]
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology ) J
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Complication

* How do you do PCA if shape and intensity may co-
vary?

Answer : Form combined vector of shape and intensity variation

W, (X - X9
G- G(avg)

Y:

where W, is a diagonal matrix of weights. Then do PCAon'Y.

T.F. Cootes, G.J. Edwards, and C.J. Taylor, "Active appearance models," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-- 685,

June 2001
i ==
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology @) ’,'
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Further complication

* How do you find the right weights to use?
Answer (from Cootes et al. 1998):

The elements of b, have units of distance, those of b, have units of intensity, so
they cannot be compared directly. Because P, has orthogonal columns, varying
b, by one unit moves g by one unit. To make b, and b, commensurate, we must
estimate the effect of varying b, on the sample g. To do this we systematically
displace each element of by from its optimum value on each training example,
and sample the image given the displaced shape. The RMS change in g per
unit change in shape parameter b, gives the weight w, to be applied to that
parameter in equation (5).

l.e., do PCA first on shape only and determine an appropriate
V... Then find an optimal X"’ for each training sample (j). Then
vary the values of \*'=X+q€, to create new shape models X'*'and

determine the corresponding texture vectors GY*). Then the weight

S S T

=X
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology % R J
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Fig. 3. First two modes of grey-level vari-
Fig. 2, First two modes of shape variation  ytion (43 sd)
(+3 sd)
Shape .
Intensity
Source: Cootes et al. 1998
, =
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology % @) ’,'
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Face modes

Fig. 4. First four modes of appearance variation (<3 sd)

Combined
Source: Cootes et al. 1998
) o =
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, R J
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Basic Algorithm
+ Make an initial guess at model weights
» Create a model from weights
 Evaluate error
* lteratively improve
T.F. Cootes, G.J. Edwards, and C.J. Taylor, "Active appearance models," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-- 685,
June 2001
=
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, R ;’
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Basic Iteration of the Method

. Project the texture sample into the texture model frame
u;i‘ng gw o :[. l(g"ll‘)

Evaluate the error vector, r =g, —g,,, and the current
error,l:—r "'"*\
3.  Compute the predicted displacements, hp(— Rr(p).

to

4. Update the model parameters p — p + A("p, w l'fe'mm‘flally \\
k=1 \
5. Calculate the new points, X’ and model frame texture g/, . 1
6. Sample the image at the new points to obtain g . !
7. Calculate a new error vector, v’ = 7,,' (g’ ) — g/ :
8. If Y|* < E, then accept the new estimate; otherwise, try at |
k=05, k = 0.25, etc. AmT T T TSN
\ dp Ip dp /
~ 7’
Source: Cootes et al. 2001 S~ ==
Copyright 2021 R. H. Taylor " . Center for C Surgical Systems and Technology % '
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Basic Iteration of the Method
. Project the texture sample into the texture model frame
using g, = T, (&im)- e~
2. Evaluate the error vector( r = g, —g,,)and the current
error, E = |r|’. \~__,r’
3. Compute the predicted displacementsy, ép = —Rr(p).
4. Update the model parameters p — p A A(‘\p, where initially
k=1.
5. Calculate the new points, X" and mode}\frame texture g/ .
6. Sample the image at the new pomts to optain g: i
7. Calculate a new error vector, ¥’ = 7,.'(g\}) — g/,..
8. If |t|* < E, then accept the new estimate; (\therw ise, try at
k=0.5, k= 0.25, etc. \
|Note simple sum of differences. !
IWhat are some alternatives?
Source: Cootes et al. 20017 = L o e e e e e e o e o o o e e o e o I
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology $
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Results

Fig. 10. Reconstruction (left) and original (right) given original landmark points

Source: Cootes et al. 1998

=X
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology % &\ ,"
Initial 2its 8 its 14 its 20 its converged
Source: Cootes et al. 1998 Fig. 11. Multi-Resolution search from displaced position
==Y
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology @) ’,'
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Results: Knee Example

* Trained on 30 knee MRI images
*  With 42 landmark points

Fig.12. First two modes of ap- Fig. 13. Best fit of knee model to new image given
pearance variation of knee model  landmarks

Source: Cootes et al. 1998

Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology % el
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Results: Knee Example

Initial 2 its Converged (11 its)

Fig. 14. Multi-Resolution search for knee

Source: Cootes et al. 1998

) =
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology SNV
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Deformable registration between density atlas and a set of
2D X-Rays

* Goal: Register and Deform the statistical density atlas to match
intraoperative x-rays

* Significance:
— Build virtual patient specific CT without real patient CT
— Register pre-operative models and intra-operative images

— Map predefined surgical procedure and anatomical landmarks
into intra-operative images

Jianhua Yao

87

2D/3D Registration — Shape and Intensity Models

Ly
Shape statistical model Intensity statistical model (PCA on voxel
(PCA on mesh vertices) values and polynomials fit to modes)

S {Sk} C {Cky}
Deformable Reestimat
2D/3D Registered Atlas Szzs':‘t‘ig: \ ’
Registration Projections (Compute )
(Estimate A®) pute p
Patient X-ray images T Re%ist.eretq Atlas
rojections
or DRRs S0 s AR
[1] Sadowsky, O., Chintalapani, G., Taylor, R.H., MICCAI 2007; CO+Z pkCk
[2] Chintalapani et al. PMMIA/MICCAI 2009
=X
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Suglichb Sytsteins @w\Fierhnsilemyi nt%;a
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2D/3D Registration — Shape and Intensity

@O @ 6) (4) (5)
strue_ | RMS ( RMS( A
St IVEUe VIR [V, Vibaes )|((3)-(4))/(3)]  Avg surface registration accuracy: 2.21mm
# Avg. reduction in RMS errors intensity: 27%
(mm) (HU) (HU) %
1 1.94 109.92 58.88 46.43
2 1.62 128.32 96.0 25.19
3 1.90 98.4 77.12 21.63
4 | 2.60 51.68 41.6 19.50
5| 248 109.44 84.8 22.51
6 | 1.95 73.44 50.56 31.15
7 2.30 72.96 47.52 34.84
8 | 293 101.28 85.76 15.32
avg| 2.21 93.18 67.78 27.07

Table 1: Residual errors from leave-out-validation tests of the
augmented registration algorithm. Column 2 shows the
surface distance after 2D/3D shape registration. Columns 3
shows residual errors when using mean density only and
column 4 shows residual errors with mean density and
density modes. The % reduction in RMS error between
columns 3 and 4 is given in Column 5

Slide credit: Gouthami Chintalapani

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology
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2D/3D Registration — Hip Model

* Problem: To create patient specific models
using atlas

— single organ atlases are insufficient

* Our approach: Develop a multi-component
atlas

— Use hip atlas instead of a pelvis or femur atlas Ppelvis atlas registered to hip projection

— Extend atlas building framework to images
incorporate hip joint

— Extend the registration framework to
incorporate articulated hip joint

* Results

— Multi-component atlas registration is
accurate compared to individual organ atlas

Hip atlas registered to hip projection
images

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬁ,
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Multi-Component Atlas

Two components — pelvis and femur

Create mesh instances of pelvis and femur separately
Align pelvis and femur meshes together

Align pelvis meshes

Align femur meshes

Concatenate pelvis and femur meshes

N9 vk, wN e

PCA on the concatenated mesh

Combined Rigid+Scale Separate Rigid Combined Statistical Analysis

) . ' . . ¥ =
Copyright 2021 R. H. Taylor Slide credit: Gaghhanighiata\aPesiter for Computer Integrated Surgical Systems and Technology m, .J
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Multi-Component Hip Atlas

pCl PC2 PC3

[1] Chintalapani et al. CAOS 2009
=

)
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Suigiesb Sysseins Swfieshnel Ceyi nta@a 2\ \
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2D/3D Registration — Hip Model

* Registration with truncated
images
— FOV: 160mm

— Three views

* Avg surface registration accuracy:
2.15mm

Atlas projections overlaid on DRR images after 2D/3D deformable registration
registration

Chintalapani et al. CAOS 2009
Slide credit: Gouthami Chintalapani-!—

=X
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. . .
Applications — Hip Osteotomy
P ‘\\
D
7t .
) |
A ‘ 3 gf §
b o "
N2
= -
Copyright 2021 R. H. Taylor Slide credit: Egineesive ResRarslErntpr for Computer Integrated Surgical Systems and Technology 7} ahl
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Background

*  Hip dysplasia:
— Malformation of the hip (normally a ball and socket joint)
— Significant cause of osteoarthritis, especially in young adults

e Surgery goals:
— Reduce pain symptoms
— Realign joint to contain the femoral head
— Diminish risk for degenerative joint changes
— Improve contact pressure distribution

*  Periacetabular Osteotomy (PAO):
— Maintains pelvic structural stability
— Preserves viable vascular supply
— Technically challenging tool placement and realignment proce|

e Limitations of current navigation systems:
— Lack the ability to track bone fragment alignment
— Do not provide anatomical measurements
— Omit biomechanical-based planning and guidance

— Ignore the risk of reducing joint range-of-motion
g gJ g Anatomical measurements used to

diagnose hip dysplasia

Slide credit: Gouthami Chmtalapanl Mehran Armand

N . \t
Copyright 2021 R. H. Taylor i Center for C Surgical Systems and Technology SNV
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Biomechanical Guidance System (BGS)

*  BGS Preoperatively:
— Plans surgical cuts
— Optimizes contact pressures and joint realignment

— Calculates anatomical-based angles that are
meaningful to the surgical team

*  BGS Intraoperatively:
— Tracks surgical tools and bone fragment alignment
— Computes resulting contact pressures
— Calculates hip range-of-motion
— Visualizes the surgical cuts

-
- D|saplays radiation- free Digitally Reconstructed Contact Pressures
iographs (DRR)

Model to Patient Joint contact-pressure after PAO
Registration Hip-range-of-motion
Slide credit: Gouthami Chlntalapanl Mehran Armand |
Copyright 2021 R. H. Taylor Center for Ct Surgical Systems and Technology % 2N
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Atlas Based Extrapolation of CT

* Problem: Partial CT scans of patients
— Dose minimization for young female patients
— But the BGS needs full pelvis CT for planning

. . H el Typical pre-operative CT scan of a
My approach: Use atlas to predict the missing dveplastic patient undergoing

data osteotomy
— Robust probabilistic atlases
— Improve prediction using pre-op and intra-op
x-ray images

* Preliminary Results
— Comparable to the registration errors from full CT

scans Distribution of surface registration
errors of a patient pelvis model
estimated from partial CT scan

Chintalapani et al. SPIE 2010
0N

Copyright 2021 R. H. Taylor Slide credit: baring Gbdedadk fer for C Surgical Systems and Technology % 1 '},7

Atlas Adaptation to Partial Data

Given a statistical shape model with mean S and modes U = {U"..U"}
Rearrange vertex indices and partition model into components corresponding
to known and unknown parts

5o 5] uo| Y - [

S U
J J S, Observed

Find a set of registration parameters (s,R,ﬁ,X)

(s,R,p,\)=arg minHSJ(""S’ - (sR(§J + UJX) + ﬁ)

Estimate the total shape as

— N o
St _ (SR(S, + U,)\) + p)
SJ(obs)
Chintalapani et al. SPIE 2010
Copyright 2021 R. H. Taylor Slide credit: Gengthesnh£histalapaatiter for Computer Integrated Surgical Systems and Technology $
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Atlas Adaptation to Partial Data with Xray Images

Missing
» 2D/3D registration[2] of inferred data with X-ray images QBSEIvEd
(s,R, p,)\) = argmax Y, MI(l,,DRR(DensityAtlas,sR (sJ + UJ)\) +p)
» Final atlas extrapolated model is given as
Slesth _ (SR(S’ * U’)‘) + p)
(obs)
SJ
Chintalapani et al. SPIE 2010
U=
Copyright 2021 R. H. Taylor Slide credit: Goghtesrinafssaarmdyfanter for C Surgical Systems and Technology % W
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Results
Leave-Out Validation of Partial Data Extrapolation -
3 T T T T T T T T - Y
E25 o . :
5|
m 2
®
F
]
815}
1 | i i I i ; i i
0 10 20 30 40 50 60 70 80
Number of Principal Components
Copyright 2021 R. H. Taylor Slide creditefamiathmak&saisntalennpi for Computer Integrated Surgical Systems and Technology $ 2\
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Results — Atlas Experiments

Full CT Partial CT Partial C'T + X-ray

7 mean | max | std | 95% || mean | max | std | 95% | mean | max | std | 95%

1 1.41 | 820 | 1.06 | 3.45| 1.97 | 14.06 | 1.69 | 5.17 | 1.37 | 10.94 | 1.13 | 3.54
2 1.88 | 7.25 | 1.42 | 4.71 | 2.15 | 12.25|1.73 528 | 1.73 | 14.78 | 1.71 | 4.51
3 1.55 | 7.72 | 1.20 | 3.77 | 2.45 | 11.332.08|6.89 | 1.41 | 6.81 | 1.10| 3.54
4 1.32 | 5.77 | 1.01 327 1.69 | 9.06 | 1.43]4.58 | 1.21 | 6.80 | 1.03 | 3.27
5 1.72 | 829 | 1.17 379 | 1.62 | 6.87 | 1.24]3.93 | 1.36 | 8.17 | 1.13]| 3.61
6 1.69 | 10.58 | 1.55 1 4.78 || 2.64 | 14.87 [2.27 | 7.18 | 1.71 | 11.33 [ 1.54 | 5.06
avg 2.08 | 11.40 | 1.74 | 5.50

! l ]

Atlas inferred CT using full Atlas extrapolated CT using Atlas extrapolated CT using
CT scan partial CT scan partial CT scan and X-ray
images
Chintalapani et al. SPIE 2010

) ) =Y
Copyright 2021 R. H. Taylor Slide credit: Engineesing Rusrarstagrmter for Computer Integrated Surgical Systems and Technology %

Results — Atlas Experiments
Inferred CT from full 6mm
CT scan

True CT scan

Extrapolated CT from

artial CT scan
P 3mm

Extrapolated CT from
partial CT scan and X-
ray images

Distribution of surface errors between atlas extrapolated models and the true CT
model

Chintalapani et al. SPIE 2010 Slide credit: Gouthami Chintalapani, Mehran Armand

. =]
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Cut-and-Paste Model Completion

Shape derived from
projected modes

Observed parts of Ground truth shape
shape

D

Copyright 2021 R. H. Taylor il il Center for C Surgical Systems and Technology % ‘},
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Model Completion with Thin Plate Spline

Overlap Region

Shape derived from
(correspondences)

projected modes

-~ >y, TPS
extrapolation

Observed parts of Ground truth shape
shape

R. B. Grupp, H. Chiang, Y. Otake, R. J. Murphy, C. R. Gordon, M. Armand, and R. H. Taylor, "Smooth
extrapolation of unknown anatomy via statistical shape models", in Proc. SPIE 9415, Medical Imaging
2015: Image-Guided Procedures, Robotic Interventions, and Modeling, San Francisco, 8-10 Feb., 2015.
p. 941524. 10.1117/12.2081310

Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology $
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Model Completion of Pelvis from Partial CT Only
R. Grupp, R. Taylor, et al., CAOS 2015

Smooth extrapolation
using only acetabulum
scan

w

IS

Smooth extrapolation
using only acetabulum
scan + 5% of iliac crest

[N}

Naive cut-and-paste
extrapolation using only
acetabulum scan + 5% of
iliac crest

R. Grupp, Y. Otake, R. Murphy, J. Parvizi, M. Armand, and R. Taylor, "Pelvis surface estimation from partial CT for computer-
aided pelvic osteotomies," in Computer Assisted Orthopaedic Surgery, Vancouver, June 17-19, 2015..

) =]
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology 3 j
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Osteotomy Simulations

» Atlas extrapolated model is used primarily for two reasons:
1. Model to patient registration
—  simulation experiments
—  six leave out experiments _ﬁ‘

#

—  FRE error metric i

N aat N
2. Fragment tracking
—  Simulated osteotomy cuts k
. . ¢
—  Applied known transformation to the '3
N 2 \

—  Fragment / )

—  Computed the fragment transformation - N

—  Compared it to the known transformation A .
Copyright 2021 7. H.Taylr Slide credit: Gouthami Chint.alap?ni, Mehrar;::::i:rdr urgielSysten and echnology $
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Statistical Assessment of ACL Tunnel Positions

Xin Kang, Russell Taylor, Yoshito Otake, Wai-Pan Yau

Knee atlas/CT X-ray style rendering
| i ‘ ;
| I
| I
I
: |
: |
' q i
. i [ 3D-2D H
registration §
l Jg .E
‘ Q
Tunnel position -
Post-op X-rays estimation in 3D | 2D measure 3D measurel

) 0=y
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Basic Approach: Contour-based deformable 2D-3D
registration

M-Step (Pose):
> [R t] argmanp ~T(X_R, t)"
M-Step (Shape):
2
a=argminpy d? +(1- 2/\—"
mn k

where
Xin Kang, Russell Taylor, Yoshito “\' P V RX(O) a4 t a4 ZRe""]
Otake, Wai-Pan Yau

N . N
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Basic Approach: Contour-based deformable 2D-3D
registration

—
Projected vs Detected Points (0)
3 .

- ==

|
. o o e = === —
| 1 (
1 | M-Step (Pose):
: [R t] argmin "p, IX ~T(X, R,i)"
|
! |l___________
: I [M-Step (Shape):
| 2
I I [a=argmin p> d2 +(1—p)> %
I I_> mn k /\k
: I " where
__________ I

Xin Kang, Russell Taylor, Yoshito
Otake, Wai-Pan Yau

s

RX‘°’+t+ZRe *)}

Copyright 2021 R. H. Taylor
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Basic Approach: Contour-based deformable 2D-3D

registration

(e
».i.Un

I

II . (Pose):

§ 41 #
T # of iteration

"B hrgmind p X
mn

Max err (mm)

=
1032 750 663 617 533 498 464 395 381

329 302

 ——
|

Xin Kang, Russell Taylor, Yoshito
Otake, Wai-Pan Yau

Copyright 2021 R. H. Taylor

& = argmin pZd +(1-p)
1

; M-Step (Shape):

*M
>/|=\~m

where

“,/ P, V RX<°’+t+ERe‘“)]
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C-arm Distortion

»What is distortion ?
—Avg distortion: 2.14 mm/pixel
—max distortion: 4.60 mm/pixel

»How to rectify images ?
»Phantom based correction =
» Polynomial functions to model distortion Example C-arm images showing

distortion, straight metal wires appear
curved due to distortion

O=C

(ug,vq) = Z Z CijBij(uo, vo)

i=0 =0

Typical bi-planar phantom used for C-arm

calibration
Slide credit: Gouthami Chintalapani

) ) =Y
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C-Arm Distortion Correction

(ud> Ud) - (U(), UO)

Distortion vector map

Slide credit: Gouthami Chintalapani TN =
. T
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology %
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Statistical Characterization of C-Arm
Distortion correction using PCA

»  Principal component analysis on distortion maps
» 120 images, one every 3 degrees approx., along propeller axis (similar to
the full sweep data used for 3D reconstruction)

» 200 images to span the sphere defined by the “C” of the c-arm

Reconstruction Error Plot for Leave-out Validation Test
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Slide credit: Gouthami Chintalapani
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C-arm Imaging Volume

Sov RagesRerss
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Slide credit: Gouthami Chintalapani
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Percentage Variation Explained

Eigen Analysis of Distortion Maps

First three modes are significant and explain 99% of the variation
Leave-out validation tests indicate that the distortion parameters can be
recovered with an accuracy of less than 0.1 mm/pixel.

Reconstruction Error Plot for Leave-out Validation Test
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Sampling Resolution

* How many images are required to statistically characterize
the distortion patterns ?

0.12
Il mean
0.1 0.25 [95%
I max
gooe = 02
< X
£ a
0.06 =
£ €
£ Eois
5 E
&5 0.04 5
o o1
0.02
el | -
0
3 6 9 12 15 1 21 30
Sampling Resolution — Angular separation between the images (degrees) 0 250 115 77 58 46 33 23 16 12
Number of Images Used
Circular Trajectory C-arm Imaging Volume

Slide credit: Gouthami Chintalapani
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Recovering Distortion Parameters
* Use as few beads as possible to recover the distortion mode
parameters
0.2 0.5
——RMS ——RMS
95% 04 95% ||
5% \\ e 5 \\’_‘_‘\v/’_—:—‘max
£ 3
g 303 i
5 502
005 I T I I ] I 1 . 0.1 T I I I I
N N N S S S o |
° é 1‘ 1‘5 2‘0 2‘5 5‘0 7‘5 1 60 GO 1 1‘5 éO 2’5 5‘0 7‘5 1 60
Number of beads used for recovering distortion parameters Number of beads used for recovering distortion parameters
Circular Arc C-arm Imaging Volume
Slide credit: Gouthami Chintalapani
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Small Phantom based Distortion Correction

Distortion corrected image A

Peripheral bead \
locations

Distortion
mode

Example patient image
matching

peripheral beads

Distortion
modes

Avg. residual error: 0.2mm/pixel
Max. residual error: 0.8mm/pixel
Slide credit: Gouthami Chintalapani

Prior distortion model

Copyright 2021 R. H. Taylor  Chintalapani et al. SPIE 2007 Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Small Phantom based Distortion
Correction

SPAN average residual emor
maximur residual eror

15

Residual error (mm)

Ve
B & o 12 14 B 18 @ 2
Number of points used for distortion correction

Fig. 2 (Left) Residual Error in distortion vs number of points used for distortion correction.

Fig.2. (Right) Results from simulation experiments using simpler phantom. (a) Knee X-ray image with phantom
BBs overlaid in red color (b) distortion corrected image with dense grid pattern phantom (c) (b) — (a) with
distortion vectors overlaid in red (d) distortion corrected image with using BBs in (a) and PCA (e) (b) — (d) with
the residual distortion vectors overlaid in red

Statistical Characterization of C-arm Distortion with Intra-operative Application

o =X
Copyright 2021 R. H. Taylor m, 3|

Engineering Research Center for Computer Integrated Surgical Systems and Technology
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Using Patient CT as Fiducial

Patient C-Arm images

with distortion > 2D/3D Registration 3
3 7y
Registered |
3 Drrs :
Prior CT :
A\ 4 O

Distortion corrected images

i | Distortion mode
i | matching
: Avg. residual error: 0.5mm/pixel

Prior distortion model

Chintalapani et al. ISBI 2007  slide credit: Gouthami Chintalapani

=X
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C-Arm Distortion Correction Using Patient
CT as Fiducial
. . Distortion Corrected
C-Arm images with C-Arm images
distortion
Intra-operative C-Arm :
Initialization i CT Projections (DRRs)
Registered Patient CT
Patient CT
Iterative Step
Thanks to Ofri Sadowsky for assistance with 2D/3D registration
Slide credit: Gouthami Chintalapani |
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology % R ’,'
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C-Arm Distortion Correction Using Patient
CT as Fiducial

Results from simulation experiments. (a) true projection; (b) warped projection (simulated x-ray); (c)
difference between true and warped projection ((a) - (b)); (d) registered and distortion corrected
projection; (f) (a) - (d); The bottom row shows the distortion map before and after correction.

Slide credit: Gouthami Chintalapani
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