Skip to main content

A Comprehensive Study on Deep Image Classification with Small Datasets

  • Conference paper
  • First Online:
Advances in Electronics Engineering

Abstract

Convolutional Neural Networks (CNNs) showed state-of-the-art accuracy in image classification on large-scale image datasets. However, CNNs show considerable poor performance in classifying tiny data since their large number of parameters over-fit the training data. We investigate the classification characteristics of CNNs on tiny data, which are important for many practical applications. This study analyzes the performance of CNNs for direct and transfer learning based training approaches. Evaluation is performed on two publicly available benchmark datasets. Our study shows the accuracy change when altering the DCNN depth in direct training to indicate the optimal depth for direct training. Further, fine-tuning source and target network with lower learning rate gives higher accuracy for tiny image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krizhevsky A, Sutskever I (2012) Hinton GE: ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

    Google Scholar 

  2. Lin Y, Lv F, Zhu S et al (2011) Large-scale image classification: fast feature extraction and SVM training. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 1689–1696. https://doi.org/10.1109/CVPR.2011.5995477

  3. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE, pp 3360–3367

    Google Scholar 

  4. Karpathy A, Fei-Fei L (2015) Deep visual-semantic alignments for generating image Des. In: Proceedings of the IEEE conference on computer vision and pattern Recognition, pp 3128–3137. https://doi.org/10.1109/CVPR.2015.7298932

  5. Kokul T, Fookes C, Sridharan S, et al (2017) Gate connected convolutional neural network for object tracking. In: IEEE international conference on image processing (ICIP). IEEE, pp 2602–2606 (2017)

    Google Scholar 

  6. Kokul T, Ramanan A, Pinidiyaarachchi UAJ (2016) Online multi-person tracking-by-detection method using ACF and particle filter. In: IEEE 7th international conference on intelligent computing and information systems ICICIS, pp 529–536. https://doi.org/10.1109/IntelCIS.2015.7397272

  7. Stiller C, Wojek C, Lauer M et al (2013) 3D traffic scene understanding from movable platforms. IEEE Trans Pattern Anal Mach Intell 36:1012–1025. https://doi.org/10.1109/tpami.2013.185

    Article  Google Scholar 

  8. Rasheed N, Khan SA (2014) Khalid: a tracking and abnormal behavior detection in video surveillance using optical flow and neural networks. In: Proceeding IEEE 28th international conference on advanced information networking work. IEEE WAINA, pp 61–66. https://doi.org/10.1109/WAINA.2014.18

  9. Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  10. Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. In: Proceedings Br Mach Vis Conference, pp 41.1–41.12. https://doi.org/10.5244/C.29.41

  11. Weinberger K (2005) Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res 207–244. https://doi.org/10.1142/S021800141100897X

    Article  MathSciNet  Google Scholar 

  12. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778

    Google Scholar 

  13. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv Prepr arXiv:14091556, pp 1–14. https://doi.org/10.1016/j.infsof.2008.09.005

    Article  Google Scholar 

  14. Dalal N, Triggs B (2010) Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05). IEEE, pp 886–89

    Google Scholar 

  15. Lindeberg T (2012) Scale invariant feature transform. Scholarpedia 7:10491. https://doi.org/10.4249/scholarpedia.10491

    Article  Google Scholar 

  16. Jia D, Wei D, Socher R, et al (2009) ImageNet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255. https://doi.org/10.1109/CVPRW.2009.5206848

  17. Shin H-C, Roth HR, Gao M et al (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35:1285–1298. https://doi.org/10.1109/TMI.2016.2528162

    Article  Google Scholar 

  18. Tan C, Sun F, Kong T, et al (2018) A survey on deep transfer learning. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 11141 LNCS: 270–279. https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  19. Fukushima K (1988) Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw 1:119–130. https://doi.org/10.1016/0893-6080(88)90014-7

    Article  Google Scholar 

  20. Szegedy C, Liu W, Jia Y, et al (2015) Going deeper with convolutions. In: The IEEE conference on computer vision and pattern recognition (CVPR), pp 1–9

    Google Scholar 

  21. Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: visualising image classification models and saliency maps, pp 1–8

    Google Scholar 

  22. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 8689 LNCS: pp. 818–833. https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  23. Bengio Y (2009) Learning Deep architectures for AI. Found Trends® Mach Learn 2:1–127. https://doi.org/10.1561/2200000006

    Article  MathSciNet  Google Scholar 

  24. CS231n: Convolutional neural networks for visual recognition home page, http://cs231n.stanford.edu/. Last accessed 21 May 2019

  25. Cireşan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. https://doi.org/10.1109/CVPR.2012.6248110

    Article  Google Scholar 

  26. Cireşan DC, Meier U, Masci J et al (2011) Flexible, high performance convolutional neural networks for image classification. IJCAI Int Jt Conf Artif Intell 1237–1242. https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210

  27. Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? pp 3320–3328

    Google Scholar 

  28. Caruana R (1997) Multi-task learning. Kluwer Academic Publishers

    Google Scholar 

  29. Chen H, Wang Y, Shi Y et al (2018) Deep Transfer learning for person re-identification. In: 2018 IEEE 4th international conference on big data, BigMM (2018). https://doi.org/10.1109/BigMM.2018.8499067

  30. Oquab M, Bottou L, Laptev I, Sivic J (2014) Learning and transferring mid-level image representations using convolutional neural networks. In: 2009 IEEE conference on computer vision and pattern recognition, pp 1717–1724. https://doi.org/10.1109/CVPR.2014.222

  31. Sharif A, Hossein R, Josephine A et al (2014) CNN features off-the-shelf-an astounding baseline for recognition. Computer vision and pattern recognition workshops (CVPRW), pp 512–519

    Google Scholar 

  32. Guyon I, Dror G, Lemaire V et al (2011) Unsupervised and transfer learning challenge. Proc Int Jt Conf Neural Networks 793–800. https://doi.org/10.1109/IJCNN.2011.6033302

  33. Ganin Y, Lempitsky V (2014) Unsupervised domain adaptation by Backpropagation arXiv preprint arXiv:1409.7495

  34. Fei-Fei Li, Fergus Rob, Perona Pietro (2007) Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Comput Vis Image Underst 106:59–70. https://doi.org/10.1016/j.cviu.2005.09.012

    Article  Google Scholar 

  35. Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. In: Learning multiple layers of features from tiny images. University of Toronto

    Google Scholar 

  36. Hinton GE, Srivastava N, Krizhevsky A et al (2012) Improving neural networks by preventing co-adaptation of feature detectors arXiv:1207.0580v1[cs.NE], pp 1–18

  37. Chollet F (2015) “Keras.”

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kokul Thanikasalam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chandrarathne, G., Thanikasalam, K., Pinidiyaarachchi, A. (2020). A Comprehensive Study on Deep Image Classification with Small Datasets. In: Zakaria, Z., Ahmad, R. (eds) Advances in Electronics Engineering. Lecture Notes in Electrical Engineering, vol 619. Springer, Singapore. https://doi.org/10.1007/978-981-15-1289-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1289-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1288-9

  • Online ISBN: 978-981-15-1289-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics